Visible to the public Biblio

Found 271 results

Filters: Keyword is Logic gates  [Clear All Filters]
2023-09-07
Cheng, Cheng, Liu, Zixiang, Zhao, Feng, Wang, Xiang, Wu, Feng.  2022.  Security Protection of Research Sensitive Data Based on Blockchain. 2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :237–241.
In order to meet the needs of intellectual property protection and controlled sharing of scientific research sensitive data, a mechanism is proposed for security protection throughout “transfer, store and use” process of sensitive data which based on blockchain. This blockchain bottom layer security is reinforced. First, the encryption algorithm used is replaced by the national secret algorithm and the smart contract is encapsulated as API at the gateway level. Signature validation is performed when the API is used to prevent illegal access. Then the whole process of data up-chain, storage and down-chain is encrypted, and a mechanism of data structure query and data query condition construction based on blockchain smart is provided to ensure that the data is “usable and invisible”. Finally, data access control is ensured through role-based and hierarchical protection, and the blockchain base developed has good extensibility, which can meet the requirement of sensitive data security protection in scientific research filed and has broad application prospects.
ISSN: 2473-3636
Fowze, Farhaan, Choudhury, Muhtadi, Forte, Domenic.  2022.  EISec: Exhaustive Information Flow Security of Hardware Intellectual Property Utilizing Symbolic Execution. 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
Hardware IPs are assumed to be roots-of-trust in complex SoCs. However, their design and security verification are still heavily dependent on manual expertise. Extensive research in this domain has shown that even cryptographic modules may lack information flow security, making them susceptible to remote attacks. Further, when an SoC is in the hands of the attacker, physical attacks such as fault injection are possible. This paper introduces EISec, a novel tool utilizing symbolic execution for exhaustive analysis of hardware IPs. EISec operates at the pre-silicon stage on the gate level netlist of a design. It detects information flow security violations and generates the exhaustive set of control sequences that reproduces them. We further expand its capabilities to quantify the confusion and diffusion present in cryptographic modules and to analyze an FSM's susceptibility to fault injection attacks. The proposed methodology efficiently explores the complete input space of designs utilizing symbolic execution. In short, EISec is a holistic security analysis tool to help hardware designers capture security violations early on and mitigate them by reporting their triggers.
2023-08-25
Zhang, Xue, Wei, Liang, Jing, Shan, Zhao, Chuan, Chen, Zhenxiang.  2022.  SDN-Based Load Balancing Solution for Deterministic Backbone Networks. 2022 5th International Conference on Hot Information-Centric Networking (HotICN). :119–124.
Traffic in a backbone network has high forwarding rate requirements, and as the network gets larger, traffic increases and forwarding rates decrease. In a Software Defined Network (SDN), the controller can manage a global view of the network and control the forwarding of network traffic. A deterministic network has different forwarding requirements for the traffic of different priority levels. Static traffic load balancing is not flexible enough to meet the needs of users and may lead to the overloading of individual links and even network collapse. In this paper, we propose a new backbone network load balancing architecture - EDQN (Edge Deep Q-learning Network), which implements queue-based gate-shaping algorithms at the edge devices and load balancing of traffic on the backbone links. With the advantages of SDN, the link utilization of the backbone network can be improved, the delay in traffic transmission can be reduced and the throughput of traffic during transmission can be increased.
ISSN: 2831-4395
2023-08-24
Zhang, Ge, Zhang, Zheyu, Sun, Jun, Wang, Zun, Wang, Rui, Wang, Shirui, Xie, Chengyun.  2022.  10 Gigabit industrial thermal data acquisition and storage solution based on software-defined network. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :616–619.
With the wide application of Internet technology in the industrial control field, industrial control networks are getting larger and larger, and the industrial data generated by industrial control systems are increasing dramatically, and the performance requirements of the acquisition and storage systems are getting higher and higher. The collection and analysis of industrial equipment work logs and industrial timing data can realize comprehensive management and continuous monitoring of industrial control system work status, as well as intrusion detection and energy efficiency analysis in terms of traffic and data. In the face of increasingly large realtime industrial data, existing log collection systems and timing data gateways, such as packet loss and other phenomena [1], can not be more complete preservation of industrial control network thermal data. The emergence of software-defined networking provides a new solution to realize massive thermal data collection in industrial control networks. This paper proposes a 10-gigabit industrial thermal data acquisition and storage scheme based on software-defined networking, which uses software-defined networking technology to solve the problem of insufficient performance of existing gateways.
2023-08-18
Lo, Pei-Yu, Chen, Chi-Wei, Hsu, Wei-Ting, Chen, Chih-Wei, Tien, Chin-Wei, Kuo, Sy-Yen.  2022.  Semi-supervised Trojan Nets Classification Using Anomaly Detection Based on SCOAP Features. 2022 IEEE International Symposium on Circuits and Systems (ISCAS). :2423—2427.
Recently, hardware Trojan has become a serious security concern in the integrated circuit (IC) industry. Due to the globalization of semiconductor design and fabrication processes, ICs are highly vulnerable to hardware Trojan insertion by malicious third-party vendors. Therefore, the development of effective hardware Trojan detection techniques is necessary. Testability measures have been proven to be efficient features for Trojan nets classification. However, most of the existing machine-learning-based techniques use supervised learning methods, which involve time-consuming training processes, need to deal with the class imbalance problem, and are not pragmatic in real-world situations. Furthermore, no works have explored the use of anomaly detection for hardware Trojan detection tasks. This paper proposes a semi-supervised hardware Trojan detection method at the gate level using anomaly detection. We ameliorate the existing computation of the Sandia Controllability/Observability Analysis Program (SCOAP) values by considering all types of D flip-flops and adopt semi-supervised anomaly detection techniques to detect Trojan nets. Finally, a novel topology-based location analysis is utilized to improve the detection performance. Testing on 17 Trust-Hub Trojan benchmarks, the proposed method achieves an overall 99.47% true positive rate (TPR), 99.99% true negative rate (TNR), and 99.99% accuracy.
2023-08-03
Chen, Wenlong, Wang, Xiaolin, Wang, Xiaoliang, Xu, Ke, Guo, Sushu.  2022.  LRVP: Lightweight Real-Time Verification of Intradomain Forwarding Paths. IEEE Systems Journal. 16:6309–6320.
The correctness of user traffic forwarding paths is an important goal of trusted transmission. Many network security issues are related to it, i.e., denial-of-service attacks, route hijacking, etc. The current path-aware network architecture can effectively overcome this issue through path verification. At present, the main problems of path verification are high communication and high computation overhead. To this aim, this article proposes a lightweight real-time verification mechanism of intradomain forwarding paths in autonomous systems to achieve a path verification architecture with no communication overhead and low computing overhead. The problem situation is that a packet finally reaches the destination, but its forwarding path is inconsistent with the expected path. The expected path refers to the packet forwarding path determined by the interior gateway protocols. If the actual forwarding path is different from the expected one, it is regarded as an incorrect forwarding path. This article focuses on the most typical intradomain routing environment. A few routers are set as the verification routers to block the traffic with incorrect forwarding paths and raise alerts. Experiments prove that this article effectively solves the problem of path verification and the problem of high communication and computing overhead.
Conference Name: IEEE Systems Journal
2023-07-31
Tao, Kai, Long, Zhijun, Qian, Weifeng, Wei, Zitao, Chen, Xinda, Wang, Weiming, Xia, Yan.  2022.  Low-complexity Forward Error Correction For 800G Unamplified Campus Link. 2022 20th International Conference on Optical Communications and Networks (ICOCN). :1—3.
The discussion about forward error correction (FEC) used for 800G unamplified link (800LR) is ongoing. Aiming at two potential options for FEC bit error ratio (BER) threshold, we propose two FEC schemes, respectively based on channel-polarized (CP) multilevel coding (MLC) and bit interleaved coded modulation (BICM), with the same inner FEC code. The field-programmable gate array (FPGA) verification results indicate that with the same FEC overhead (OH), proposed CP-MLC outperforms BICM scheme with less resource and power consumption.
2023-07-21
Schulze, Jan-Philipp, Sperl, Philip, Böttinger, Konstantin.  2022.  Anomaly Detection by Recombining Gated Unsupervised Experts. 2022 International Joint Conference on Neural Networks (IJCNN). :1—8.
Anomaly detection has been considered under several extents of prior knowledge. Unsupervised methods do not require any labelled data, whereas semi-supervised methods leverage some known anomalies. Inspired by mixture-of-experts models and the analysis of the hidden activations of neural networks, we introduce a novel data-driven anomaly detection method called ARGUE. Our method is not only applicable to unsupervised and semi-supervised environments, but also profits from prior knowledge of self-supervised settings. We designed ARGUE as a combination of dedicated expert networks, which specialise on parts of the input data. For its final decision, ARGUE fuses the distributed knowledge across the expert systems using a gated mixture-of-experts architecture. Our evaluation motivates that prior knowledge about the normal data distribution may be as valuable as known anomalies.
2023-07-20
Vadlamudi, Sailaja, Sam, Jenifer.  2022.  Unified Payments Interface – Preserving the Data Privacy of Consumers. 2022 International Conference on Cyber Resilience (ICCR). :1—6.
With the advent of ease of access to the internet and an increase in digital literacy among citizens, digitization of the banking sector has throttled. Countries are now aiming for a cashless society. The introduction of a Unified Payment Interface (UPI) by the National Payments Corporation of India (NPCI) in April 2016 is a game-changer for cashless models. UPI payment model is currently considered the world’s most advanced payment system, and we see many countries adopting this cashless payment mode. With the increase in its popularity, there arises the increased need to strengthen the security posture of the payment solution. In this work, we explore the privacy challenges in the existing data flow of UPI models and propose approaches to preserve the privacy of customers using the Unified Payments Interface.
2023-07-14
Nguyen, Tuy Tan, Lee, Hanho.  2022.  Toward A Real-Time Elliptic Curve Cryptography-Based Facial Security System. 2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). :364–367.
This paper presents a novel approach for a facial security system using elliptic curve cryptography. Face images extracted from input video are encrypted before sending to a remote server. The input face images are completely encrypted by mapping each pixel value of the detected face from the input video frame to a point on an elliptic curve. The original image can be recovered when needed using the elliptic curve cryptography decryption function. Specifically, we modify point multiplication designed for projective coordinates and apply the modified approach in affine coordinates to speed up scalar point multiplication operation. Image encryption and decryption operations are also facilitated using our existing scheme. Simulation results on Visual Studio demonstrate that the proposed systems help accelerate encryption and decryption operations while maintaining information confidentiality.
2023-07-13
Kumar, Aytha Ramesh, Sharmila, Yadavalli.  2022.  FPGA Implementation of High Performance Hybrid Encryption Standard. 2022 International Conference on Recent Trends in Microelectronics, Automation, Computing and Communications Systems (ICMACC). :103–107.
Now a day's data hacking is the main issue for cloud computing, protecting a data there are so many methods in that one most usable method is the data Encryption. Process of Encryption is the converting a data into an un readable form using encryption key, encoded version that can only be read with authorized access to the decryption key. This paper presenting a simple, energy and area efficient method for endurance issue in secure resistive main memories. In this method, by employing the random characteristics of the encrypted data encoded by the Advanced Encryption Standard (AES) as well as a rotational shift operation. Random Shifter is simple hardware implementation and energy efficient method. It is considerably smaller than that of other recently proposed methods. Random Shifter technique used for secure memory with other error correction methods. Due to their reprogram ability, Field Programmable Gate Arrays (FPGA) are a popular choice for the hardware implementation of cryptographic algorithms. The proposed random shifter algorithm for AES and DES (Hybrid) data is implemented in the VIRTEX FPGA and it is efficient and suitable for hardware-critical applications. This Paper is implemented using model sim and Xilinx 14.5 version.
2023-04-14
Liu, Xiya.  2022.  Information Encryption Security System Based on Chaos Algorithm. 2022 7th International Conference on Cyber Security and Information Engineering (ICCSIE). :128–131.
Chaotic cryptography is structurally related to the concepts of confusion and diffusion in traditional cryptography theory. Chaotic cryptography is formed by the inevitable connection between chaos theory and pure cryptography. In order to solve the shortcomings of the existing research on information encryption security system, this paper discusses the realization technology of information security, the design principles of encryption system and three kinds of chaotic mapping systems, and discusses the selection of development tools and programmable devices. And the information encryption security system based on chaos algorithm is designed and discussed, and the randomness test of three groups of encrypted files is carried out by the proposed algorithm and the AES (Advanced Encryption Standard) algorithm. Experimental data show that the uniformity of P-value value of chaos algorithm is 0.714 on average. Therefore, it is verified that the information encryption security system using chaos algorithm has high security.
Johri, Era, Dharod, Leesa, Joshi, Rasika, Kulkarni, Shreya, Kundle, Vaibhavi.  2022.  Video Captcha Proposition based on VQA, NLP, Deep Learning and Computer Vision. 2022 5th International Conference on Advances in Science and Technology (ICAST). :196–200.
Visual Question Answering or VQA is a technique used in diverse domains ranging from simple visual questions and answers on short videos to security. Here in this paper, we talk about the video captcha that will be deployed for user authentication. Randomly any short video of length 10 to 20 seconds will be displayed and automated questions and answers will be generated by the system using AI and ML. Automated Programs have maliciously affected gateways such as login, registering etc. Therefore, in today's environment it is necessary to deploy such security programs that can recognize the objects in a video and generate automated MCQs real time that can be of context like the object movements, color, background etc. The features in the video highlighted will be recorded for generating MCQs based on the short videos. These videos can be random in nature. They can be taken from any official websites or even from your own local computer with prior permission from the user. The format of the video must be kept as constant every time and must be cross checked before flashing it to the user. Once our system identifies the captcha and determines the authenticity of a user, the other website in which the user wants to login, can skip the step of captcha verification as it will be done by our system. A session will be maintained for the user, eliminating the hassle of authenticating themselves again and again for no reason. Once the video will be flashed for an IP address and if the answers marked by the user for the current video captcha are correct, we will add the information like the IP address, the video and the questions in our database to avoid repeating the same captcha for the same IP address. In this paper, we proposed the methodology of execution of the aforementioned and will discuss the benefits and limitations of video captcha along with the visual questions and answering.
2023-03-31
Huang, Dapeng, Chen, Haoran, Wang, Kai, Chen, Chen, Han, Weili.  2022.  A Traceability Method for Bitcoin Transactions Based on Gateway Network Traffic Analysis. 2022 International Conference on Networking and Network Applications (NaNA). :176–183.
Cryptocurrencies like Bitcoin have become a popular weapon for illegal activities. They have the characteristics of decentralization and anonymity, which can effectively avoid the supervision of government departments. How to de-anonymize Bitcoin transactions is a crucial issue for regulatory and judicial investigation departments to supervise and combat crimes involving Bitcoin effectively. This paper aims to de-anonymize Bitcoin transactions and present a Bitcoin transaction traceability method based on Bitcoin network traffic analysis. According to the characteristics of the physical network that the Bitcoin network relies on, the Bitcoin network traffic is obtained at the physical convergence point of the local Bitcoin network. By analyzing the collected network traffic data, we realize the traceability of the input address of Bitcoin transactions and test the scheme in the distributed Bitcoin network environment. The experimental results show that this traceability mechanism is suitable for nodes connected to the Bitcoin network (except for VPN, Tor, etc.), and can obtain 47.5% recall rate and 70.4% precision rate, which are promising in practice.
2023-03-03
Ma, Limei, Zhao, Dongmei.  2022.  Research on Setting of Two Firewall Rules Based on Ubuntu Linux System. 2022 International Conference on Computer Network, Electronic and Automation (ICCNEA). :178–182.
"Security first" is the most concerned issue of Linux administrators. Security refers to the integrity of data. The authentication security and integrity of data are higher than the privacy security of data. Firewall is used to realize the function of access control under Linux. It is divided into hardware or software firewall. No matter in which network, the firewall must work at the edge of the network. Our task is to define how the firewall works. This is the firewall's policies and rules, so that it can detect the IP and data in and out of the network. At present, there are three or four layers of firewalls on the market, which are called network layer firewalls, and seven layers of firewalls, which are actually the gateway of the agent layer. But for the seven layer firewall, no matter what your source port or target port, source address or target address is, it will check all your things. Therefore, the seven layer firewall is more secure, but it brings lower efficiency. Therefore, the usual firewall schemes on the market are a combination of the two. And because we all need to access from the port controlled by the firewall, the work efficiency of the firewall has become the most important control of how much data users can access. This paper introduces two types of firewalls iptables and TCP\_Wrappers. What are the differences between the use policies, rules and structures of the two firewalls? This is the problem to be discussed in this paper.
ISSN: 2770-7695
2023-02-17
Rekeraho, Alexandre, Balan, Titus, Cotfas, Daniel T., Cotfas, Petru A., Acheampong, Rebecca, Musuroi, Cristian.  2022.  Sandbox Integrated Gateway for the Discovery of Cybersecurity Vulnerabilities. 2022 International Symposium on Electronics and Telecommunications (ISETC). :1–4.
Emails are widely used as a form of communication and sharing files in an organization. However, email is widely used by cybercriminals to spread malware and carrying out cyber-attacks. We implemented an open-source email gateway in conjunction with a security sandbox for securing emails against malicious attachments. The email gateway scans all incoming and outgoing emails and stops emails containing suspicious files. An automated python script would then send the suspected email to the sandboxing element through sandbox API for further analysis, while the script is used also for the prevention of duplicate results. Moreover, the mail server administrator receives notifications from the email gateway about suspicious attachments. If detected attachment is a true positive based on the sandbox analysis result, email is deleted, otherwise, the email is delivered to the recipient. The paper describes in an empirical way the steps followed during the implementation, results, and conclusions of our research.
ISSN: 2475-7861
2023-02-03
Saha, Akashdeep, Chatterjee, Urbi, Mukhopadhyay, Debdeep, Chakraborty, Rajat Subhra.  2022.  DIP Learning on CAS-Lock: Using Distinguishing Input Patterns for Attacking Logic Locking. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :688–693.
The globalization of the integrated circuit (IC) manufacturing industry has lured the adversary to come up with numerous malicious activities in the IC supply chain. Logic locking has risen to prominence as a proactive defense strategy against such threats. CAS-Lock (proposed in CHES'20), is an advanced logic locking technique that harnesses the concept of single-point function in providing SAT-attack resiliency. It is claimed to be powerful and efficient enough in mitigating existing state-of-the-art attacks against logic locking techniques. Despite the security robustness of CAS-Lock as claimed by the authors, we expose a serious vulnerability and by exploiting the same we devise a novel attack algorithm against CAS-Lock. The proposed attack can not only reveal the correct key but also the exact AND/OR structure of the implemented CAS-Lock design along with all the key gates utilized in both the blocks of CAS-Lock. It simply relies on the externally observable Distinguishing Input Patterns (DIPs) pertaining to a carefully chosen key simulation of the locked design without the requirement of structural analysis of any kind of the locked netlist. Our attack is successful against various AND/OR cascaded-chain configurations of CAS-Lock and reports 100% success rate in recovering the correct key. It has an attack complexity of \$\textbackslashmathcalO(m)\$, where \$m\$ denotes the number of DIPs obtained for an incorrect key simulation.
ISSN: 1558-1101
Zheng, Jiahui, Li, Junjian, Li, Chao, Li, Ran.  2022.  A SQL Blind Injection Method Based on Gated Recurrent Neural Network. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :519–525.
Security is undoubtedly the most serious problem for Web applications, and SQL injection (SQLi) attacks are one of the most damaging. The detection of SQL blind injection vulnerability is very important, but unfortunately, it is not fast enough. This is because time-based SQL blind injection lacks web page feedback, so the delay function can only be set artificially to judge whether the injection is successful by observing the response time of the page. However, brute force cracking and binary search methods used in injection require more web requests, resulting in a long time to obtain database information in SQL blind injection. In this paper, a gated recurrent neural network-based SQL blind injection technology is proposed to generate the predictive characters in SQL blind injection. By using the neural language model based on deep learning and character sequence prediction, the method proposed in this paper can learn the regularity of common database information, so that it can predict the next possible character according to the currently obtained database information, and sort it according to probability. In this paper, the training model is evaluated, and experiments are carried out on the shooting range to compare the method used in this paper with sqlmap (the most advanced sqli test automation tool at present). The experimental results show that the method used in this paper is more effective and significant than sqlmap in time-based SQL blind injection. It can obtain the database information of the target site through fewer requests, and run faster.
2023-01-13
Pehlivanoglu, Meltem Kurt, Demir, Mehmet Ali.  2022.  A Framework for Global Optimization of Linear Layers in SPN Block Ciphers. 2022 15th International Conference on Information Security and Cryptography (ISCTURKEY). :13—18.
In this paper, we design a new framework that can utilize the current global optimization heuristics for solving the straight-line program (SLP) problem. We combine Paar1, Paar2, BP (Boyar-Peralta), BFI, RNBP (Random-Boyar Peralta), A1, A2, XZLBZ, and LWFWSW (backward search) state-of-the-art heuristics by taking the XOR (exclusive OR) count metrics into consideration. Thus, by using the proposed framework, optimal circuit implementations of a given diffusion (or linear) layer can be found with fewer XOR gate counts.
2022-12-06
Khodayer Al-Dulaimi, Omer Mohammed, Hassan Al-Dulaimi, Mohammed Khodayer, Khodayer Al-Dulaimi, Aymen Mohammed.  2022.  Analysis of Low Power Wireless Technologies used in the Internet of Things (IoT). 2022 2nd International Conference on Computing and Machine Intelligence (ICMI). :1-6.

The Internet of Things (IoT) is a novel paradigm that enables the development of a slew of Services for the future of technology advancements. When it comes to IoT applications, the cyber and physical worlds can be seamlessly integrated, but they are essentially limitless. However, despite the great efforts of standardization bodies, coalitions, companies, researchers, and others, there are still a slew of issues to overcome in order to fully realize the IoT's promise. These concerns should be examined from a variety of perspectives, including enabling technology, applications, business models, and social and environmental consequences. The focus of this paper is on open concerns and challenges from a technological standpoint. We will study the differences in technical such Sigfox, NB-IoT, LoRa, and 6LowPAN, and discuss their advantages and disadvantage for each technology compared with other technologies. Demonstrate that each technology has a position in the internet of things market. Each technology has different advantages and disadvantages it depends on the quality of services, latency, and battery life as a mention. The first will be analysis IoT technologies. SigFox technology offers a long-range, low-power, low-throughput communications network that is remarkably resistant to environmental interference, enabling information to be used efficiently in a wide variety of applications. We analyze how NB-IoT technology will benefit higher-value-added services markets for IoT devices that are willing to pay for exceptionally low latency and high service quality. The LoRa technology will be used as a low-cost device, as it has a very long-range (high coverage).

2022-11-08
Wshah, Safwan, Shadid, Reem, Wu, Yuhao, Matar, Mustafa, Xu, Beilei, Wu, Wencheng, Lin, Lei, Elmoudi, Ramadan.  2020.  Deep Learning for Model Parameter Calibration in Power Systems. 2020 IEEE International Conference on Power Systems Technology (POWERCON). :1–6.
In power systems, having accurate device models is crucial for grid reliability, availability, and resiliency. Existing model calibration methods based on mathematical approaches often lead to multiple solutions due to the ill-posed nature of the problem, which would require further interventions from the field engineers in order to select the optimal solution. In this paper, we present a novel deep-learning-based approach for model parameter calibration in power systems. Our study focused on the generator model as an example. We studied several deep-learning-based approaches including 1-D Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU), which were trained to estimate model parameters using simulated Phasor Measurement Unit (PMU) data. Quantitative evaluations showed that our proposed methods can achieve high accuracy in estimating the model parameters, i.e., achieved a 0.0079 MSE on the testing dataset. We consider these promising results to be the basis for further exploration and development of advanced tools for model validation and calibration.
2022-10-20
Mahesh, V V, Shahana, T K.  2020.  Design and synthesis of FIR filter banks using area and power efficient Stochastic Computing. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :662—666.
Stochastic computing is based on probability concepts which are different from conventional mathematical operations. Advantages of stochastic computing in the fields of neural networks and digital image processing have been reported in literature recently. Arithmetic operations especially multiplications can be performed either by logical AND gates in unipolar format or by EXNOR gates in bipolar format in stochastic computation. Stochastic computing is inherently fault-tolerant and requires fewer logic gates to implement arithmetic operations. Long computing time and low accuracy are the main drawbacks of this system. In this presentation, to reduce hardware requirement and delay, modified stochastic multiplication using AND gate array and multiplexer are used for the design of Finite Impulse Response Filter cores. Performance parameters such as area, power and delay for FIR filter using modified stochastic computing methods are compared with conventional floating point computation.
2022-10-13
Sakurai, Yuji, Watanabe, Takuya, Okuda, Tetsuya, Akiyama, Mitsuaki, Mori, Tatsuya.  2020.  Discovering HTTPSified Phishing Websites Using the TLS Certificates Footprints. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :522—531.
With the recent rise of HTTPS adoption on the Web, attackers have begun "HTTPSifying" phishing websites. HTTPSifying a phishing website has the advantage of making the website appear legitimate and evading conventional detection methods that leverage URLs or web contents in the network. Further, adopting HTTPS could also contribute to generating intrinsic footprints and provide defenders with a great opportunity to monitor and detect websites, including phishing sites, as they would need to obtain a public-key certificate issued for the preparation of the websites. The potential benefits of certificate-based detection include: (1) the comprehensive monitoring of all HTTPSified websites by using certificates immediately after their issuance, even if the attacker utilizes dynamic DNS (DDNS) or hosting services; this could be overlooked with the conventional domain-registration-based approaches; and (2) to detect phishing websites before they are published on the Internet. Accordingly, we address the following research question: How can we make use of the footprints of TLS certificates to defend against phishing attacks? For this, we collected a large set of TLS certificates corresponding to phishing websites from Certificate Transparency (CT) logs and extensively analyzed these TLS certificates. We demonstrated that a template of common names, which are equivalent to the fully qualified domain names, obtained through the clustering analysis of the certificates can be used for the following promising applications: (1) The discovery of previously unknown phishing websites with low false positives and (2) understanding the infrastructure used to generate the phishing websites. We use our findings on the abuse of free certificate authorities (CAs) for operating HTTPSified phishing websites to discuss possible solutions against such abuse and provide a recommendation to the CAs.
2022-10-06
Fahrianto, Feri, Kamiyama, Noriaki.  2021.  The Dual-Channel IP-to-NDN Translation Gateway. 2021 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN). :1–2.
The co-existence between Internet Protocol (IP) and Named-Data Networking (NDN) protocol is inevitable during the transition period. We propose a privacy-preserving translation method between IP and NDN called the dual-channel translation gateway. The gateway provides two different channels dedicated to the interest and the data packet to translate the IP to the NDN protocol and vice versa. Additionally, the name resolution table is provided at the gateway that binds an IP packet securely with a prefix name. Moreover, we compare the dual-channel gateway performance with the encapsulation gateway.
2022-10-03
Tomasin, Stefano, Hidalgo, Javier German Luzon.  2021.  Virtual Private Mobile Network with Multiple Gateways for B5G Location Privacy. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). :1–6.
In a beyond-5G (B5G) scenario, we consider a virtual private mobile network (VPMN), i.e., a set of user equipments (UEs) directly communicating in a device-to-device (D2D) fashion, and connected to the cellular network by multiple gateways. The purpose of the VPMN is to hide the position of the VPMN UEs to the mobile network operator (MNO). We investigate the design and performance of packet routing inside the VPMN. First, we note that the routing that maximizes the rate between the VPMN and the cellular network leads to an unbalanced use of the gateways by each UE. In turn, this reveals information on the location of the VPMN UEs. Therefore, we derive a routing algorithm that maximizes the VPMN rate, while imposing for each UE the same data rate at each gateway, thus hiding the location of the UE. We compare the performance of the resulting solution, assessing the location privacy achieved by the VPMN, and considering both the case of single hop and multihop in the transmissions from the UEs to the gateways.