Biblio
This article describes the development of two mobile applications for learning Digital Electronics. The first application is an interactive app for iOS where you can study the different digital circuits, and which will serve as the basis for the second: a game of questions in augmented reality.
With the development of IoT and 5G networks, the demand for the next-generation intelligent transportation system has been growing at a rapid pace. Dynamic mapping has been considered one of the key technologies to reduce traffic accidents and congestion in the intelligent transportation system. However, as the number of vehicles keeps growing, a huge volume of mapping traffic may overload the central cloud, leading to serious performance degradation. In this paper, we propose and prototype a CUPS (control and user plane separation)-based edge computing architecture for the dynamic mapping and quantify its benefits by prototyping. There are a couple of merits of our proposal: (i) we can mitigate the overhead of the networks and central cloud because we only need to abstract and send global dynamic mapping information from the edge servers to the central cloud; (ii) we can reduce the response latency since the dynamic mapping traffic can be isolated from other data traffic by being generated and distributed from a local edge server that is deployed closer to the vehicles than the central server in cloud. The capabilities of our system have been quantified. The experimental results have shown our system achieves throughput improvement by more than four times, and response latency reduction by 67.8% compared to the conventional central cloud-based approach. Although these results are still obtained from the preliminary evaluations using our prototype system, we believe that our proposed architecture gives insight into how we utilize CUPS and edge computing to enable efficient dynamic mapping applications.
With the development of Internet of Things, numerous IoT devices have been brought into our daily lives. Bluetooth Low Energy (BLE), due to the low energy consumption and generic service stack, has become one of the most popular wireless communication technologies for IoT. However, because of the short communication range and exclusive connection pattern, a BLE-equipped device can only be used by a single user near the device. To fully explore the benefits of BLE and make BLE-equipped devices truly accessible over the Internet as IoT devices, in this paper, we propose a cloud-based software framework that can enable multiple users to interact with various BLE IoT devices over the Internet. This framework includes an agent program, a suite of services hosting in cloud, and a set of RESTful APIs exposed to Internet users. Given the availability of this framework, the access to BLE devices can be extended from local to the Internet scale without any software or hardware changes to BLE devices, and more importantly, shared usage of remote BLE devices over the Internet is also made available.
Various research efforts have focused on the problem of customer privacy protection in the smart grid arising from the large deployment of smart energy meters. In fact, the deployed smart meters distribute accurate profiles of home energy use, which can reflect the consumers' behaviour. This paper proposes a privacy-preserving lattice-based homomorphic aggregation scheme. In this approach, the smart household appliances perform the data aggregation while the smart meter works as relay node. Its role is to authenticate the exchanged messages between the home area network appliances and the related gateway. Security analysis show that our scheme guarantees consumer privacy and messages confidentiality and integrity in addition to its robustness against several attacks. Experimental results demonstrate the efficiency of our proposed approach in terms of communication complexity.
This Research Work in Progress paper presents a study on improving student learning performance in a virtual hands-on lab system in cybersecurity education. As the demand for cybersecurity-trained professionals rapidly increasing, virtual hands-on lab systems have been introduced into cybersecurity education as a tool to enhance students' learning. To improve learning in a virtual hands-on lab system, instructors need to understand: what learning activities are associated with students' learning performance in this system? What relationship exists between different learning activities? What instructors can do to improve learning outcomes in this system? However, few of these questions has been studied for using virtual hands-on lab in cybersecurity education. In this research, we present our recent findings by identifying that two learning activities are positively associated with students' learning performance. Notably, the learning activity of reading lab materials (p \textbackslashtextless; 0:01) plays a more significant role in hands-on learning than the learning activity of working on lab tasks (p \textbackslashtextless; 0:05) in cybersecurity education.In addition, a student, who spends longer time on reading lab materials, may work longer time on lab tasks (p \textbackslashtextless; 0:01).
This Innovate Practice Full Paper describes our experience with teaching cybersecurity topics using guided inquiry collaborative learning. The goal is to not only develop the students' in-depth technical knowledge, but also “soft skills” such as communication, attitude, team work, networking, problem-solving and critical thinking. This paper reports our experience with developing and using the Guided Inquiry Collaborative Learning materials on the topics of firewall and IPsec. Pre- and post-surveys were conducted to access the effectiveness of the developed materials and teaching methods in terms of learning outcome, attitudes, learning experience and motivation. Analysis of the survey data shows that students had increased learning outcome, participation in class, and interest with Guided Inquiry Collaborative Learning.
The design of modern computer hardware heavily relies on third-party intellectual property (IP) cores, which may contain malicious hardware Trojans that could be exploited by an adversary to leak secret information or take control of the system. Existing hardware Trojan detection methods either require a golden reference design for comparison or extensive functional testing to identify suspicious signals. In this paper, we propose a new formal verification method to verify the security of hardware designs. The proposed solution formalizes fine grained gate level information flow model for proving security properties of hardware designs in the Coq theorem prover environment. Compare with existing register transfer level (RTL) information flow security models, our model only needs to translate a small number of logic primitives to their formal representations without the need of supporting the rich RTL HDL semantics or dealing with complex conditional branch or loop structures. As a result, a gate level information flow model can be created at much lower complexity while achieving significantly higher precision in modeling the security behavior of hardware designs. We use the AES-T1700 benchmark from Trust-HUB to demonstrate the effectiveness of our solution. Experimental results show that our method can detect and pinpoint the Trojan.
Risk assessment of cyber-physical systems, such as power plants, connected devices and IT-infrastructures has always been challenging: safety (i.e., absence of unintentional failures) and security (i. e., no disruptions due to attackers) are conditions that must be guaranteed. One of the traditional tools used to help considering these problems is attack trees, a tree-based formalism inspired by fault trees, a well-known formalism used in safety engineering. In this paper we define and implement the translation of attack-fault trees (AFTs) to a new extension of timed automata, called parametric weighted timed automata. This allows us to parametrize constants such as time and discrete costs in an AFT and then, using the model-checker IMITATOR, to compute the set of parameter values such that a successful attack is possible. Using the different sets of parameter values computed, different attack and fault scenarios can be deduced depending on the budget, time or computation power of the attacker, providing helpful data to select the most efficient counter-measure.