Biblio
Named Data Networks provide a clean-slate redesign of the Future Internet for efficient content distribution. Because Internet of Things are expected to compose a significant part of Future Internet, most content will be managed by constrained devices. Such devices are often equipped with limited CPU, memory, bandwidth, and energy supply. However, the current Named Data Networks design neglects the specific requirements of Internet of Things scenarios and many data structures need to be further optimized. The purpose of this research is to provide an efficient strategy to route in Named Data Networks by constructing a Forwarding Information Base using Iterated Bloom Filters defined as I(FIB)F. We propose the use of content names based on iterative hashes. This strategy leads to reduce the overhead of packets. Moreover, the memory and the complexity required in the forwarding strategy are lower than in current solutions. We compare our proposal with solutions based on hierarchical names and Standard Bloom Filters. We show how to further optimize I(FIB)F by exploiting the structure information contained in hierarchical content names. Finally, two strategies may be followed to reduce: (i) the overall memory for routing or (ii) the probability of false positives.
The Named-Data Networking (NDN) has emerged as a clean-slate Internet proposal on the wave of Information-Centric Networking. Although the NDN's data-plane seems to offer many advantages, e.g., native support for multicast communications and flow balance, it also makes the network infrastructure vulnerable to a specific DDoS attack, the Interest Flooding Attack (IFA). In IFAs, a botnet issuing unsatisfiable content requests can be set up effortlessly to exhaust routers' resources and cause a severe performance drop to legitimate users. So far several countermeasures have addressed this security threat, however, their efficacy was proved by means of simplistic assumptions on the attack model. Therefore, we propose a more complete attack model and design an advanced IFA. We show the efficiency of our novel attack scheme by extensively assessing some of the state-of-the-art countermeasures. Further, we release the software to perform this attack as open source tool to help design future more robust defense mechanisms.
This paper presents a new fractional-order hidden strange attractor generated by a chaotic system without equilibria. The proposed non-equilibrium fractional-order chaotic system (FOCS) is asymmetric, dissimilar, topologically inequivalent to typical chaotic systems and challenges the conventional notion that the presence of unstable equilibria is mandatory to ensure the existence of chaos. The new fractional-order model displays rich bifurcation undergoing a period doubling route to chaos, where the fractional order α is the bifurcation parameter. Study of the hidden attractor dynamics is carried out with the aid of phase portraits, sensitivity to initial conditions, fractal Lyapunov dimension, maximum Lyapunov exponents spectrum and bifurcation analysis. The minimum commensurate dimension to display chaos is determined. With a view to utilizing it in chaos based cryptology and coding information, a synchronisation control scheme is designed. Finally the theoretical analyses are validated by numerical simulation results which are in good agreement with the former.
The chips in working state have electromagnetic energy leakage problem. We offer a method to analyze the problem of electromagnetic leakage when the chip is running. We execute a sequence of addition and subtraction arithmetic instructions on FPGA chip, then we use the near-field probe to capture the chip leakage of electromagnetic signals. The electromagnetic signal is collected for analysis and processing, the parts of addition and subtraction are classified and identified by SVM. In this paper, for the problem of electromagnetic leakage, six sets of data were collected for analysis and processing. Good results were obtained by using this method.
This paper proposed a feedback shift register structure which can be split, it is based on a research of operating characteristics about 70 kinds of cryptographic algorithms and the research shows that the “different operations similar structure” reconfigurable design is feasible. Under the configuration information, the proposed structure can implement the multiplication in finite field GF(2n), the multiply/divide linear feedback shift register and other operations. Finally, this paper did a logic synthesis based on 55nm CMOS standard-cell library and the results show that the proposed structure gets a hardware resource saving of nearly 32%, the average power consumption saving of nearly 55% without the critical delay increasing significantly. Therefore, the “different operations similar structure” reconfigurable design is a new design method and the proposed feedback shift register structure can be an important processing unit for coarse-grained reconfigurable cryptologic array.
Specifics of an alias-free digitizer application for compressed digitizing and recording of wideband signals are considered. Signal sampling in this case is performed on the basis of picosecond resolution event timing, the digitizer actually is a subsystem of Event Timer A033-ET and specific events that are detected and then timed are the signal and reference sine-wave crossings. The used approach to development of this subsystem is described and some results of experimental studies are given.
The development of radar technology, Synthetic Aperture Radar (SAR) and Unmanned Aerial Vehicle (UAV) requires the communication facilities and infrastructures that have variety of platforms and high quality of image. In this paper, we obtain the basic configuration of triangle array antenna using corporate feeding-line for Circularly Polarized- Synthetic Aperture Radar (CP-SAR) sensor embedded on small UAV or drone airspace with compact, small, and simple configuration. The Method of Moments (MoM) is chosen in the numerical analysis for fast calculation of the unknown current on the patch antenna. The developing of triangle array antenna is consist of four patches of simple equilateral triangle patch with adding truncated corner of each patch and resonant frequency at f = 1.25 GHz. Proximity couple, perturbation segment, single feeding method are applied to generate the circular polarization wave from radiating patch. The corporate feeding-line design is implemented by combining some T-junctions to distribute the current from input port to radiating patch and to reach 2×2 patches. The performance results of this antenna, especially for gain and axial ratio (Ar) at the resonant frequency are 11.02 dBic and 2.47 dB, respectively. Furthermore, the two-beams appeared at boresight in elevation plane have similar values each other i.e. for average beamwidth of 10 dBic-gain and the 3 dB-Ar are about 20° and 70°, respectively.
The display image on the visual display unit (VDU) can be retrieved from the radiated and conducted emission at some distance with no trace. In this paper, the maximum eavesdropping distance for the unintentional radiation and conduction electromagnetic (EM) signals which contain information has been estimated in theory by considering some realistic parameters. Firstly, the maximum eavesdropping distance for the unintentional EM radiation is estimated based on the reception capacity of a log-periodic antenna which connects to a receiver, the experiment data, the attenuation in free-space and the additional attenuation in the propagation path. And then, based on a multi-conductor transmission model and some experiment results, the maximum eavesdropping distance for the conducted emission is theoretically derived. The estimating results demonstrated that the ITE equipment may also exist threat of the information leakage even if it has met the current EMC requirements.
The challenge of maintaining confidentiality of stored and processed data in a remote database or cloud is quite urgent. Using homomorphic encryption may solve the problem, because it allows to compute some functions over encrypted data without preliminary deciphering of data. Fully homomorphic encryption schemes have a number of limitations such as accumulation of noise and increase of ciphertext extension during performing operations, the range of operations is limited. Nowadays a lot of homomorphic encryption schemes and their modifications have been investigated, so more than 25 reports on homomorphic encryption schemes have already been published on Cryptology ePrint Archive for 2016. We propose an overview of current Fully Homomorphic Encryption Schemes and analyze specific operations for databases which homomorphic cryptosystems allow to perform. We also investigate the possibility of sorting over encrypted data and present our approach to compare data encrypted by Multi-bit FHE scheme.
Cryptography is the fascinating science that deals with constructing and destructing the secret codes. The evolving digitization in this modern era possesses cryptography as one of its backbones to perform the transactions with confidentiality and security wherever the authentication is required. With the modern technology that has evolved, the use of codes has exploded, enriching cryptology and empowering citizens. One of the most important things that encryption provides anyone using any kind of computing device is `privacy'. There is no way to have true privacy with strong security, the method with which we are dealing with is to make the cipher text more robust to be by-passed. In current work, the well known and renowned Caesar cipher and Rail fence cipher techniques are combined with a cross language cipher technique and the detailed comparative analysis amongst them is carried out. The simulations have been carried out on Eclipse Juno version IDE for executions and Java, an open source language has been used to implement these said techniques.
The collaborative recommendation mechanism is beneficial for the subject in an open network to find efficiently enough referrers who directly interacted with the object and obtain their trust data. The uncertainty analysis to the collected trust data selects the reliable trust data of trustworthy referrers, and then calculates the statistical trust value on certain reliability for any object. After that the subject can judge its trustworthiness and further make a decision about interaction based on the given threshold. The feasibility of this method is verified by three experiments which are designed to validate the model's ability to fight against malicious service, the exaggeration and slander attack. The interactive success rate is significantly improved by using the new model, and the malicious entities are distinguished more effectively than the comparative model.
Vehicular ad hoc networks (VANETs) are taking more attention from both the academia and the automotive industry due to a rapid development of wireless communication technologies. And with this development, vehicles called connected cars are increasingly being equipped with more sensors, processors, storages, and communication devices as they start to provide both infotainment and safety services through V2X communication. Such increase of vehicles is also related to the rise of security attacks and potential security threats. In a vehicular environment, security is one of the most important issues and it must be addressed before VANETs can be widely deployed. Conventional VANETs have some unique characteristics such as high mobility, dynamic topology, and a short connection time. Since an attacker can launch any unexpected attacks, it is difficult to predict these attacks in advance. To handle this problem, we propose collaborative security attack detection mechanism in a software-defined vehicular networks that uses multi-class support vector machine (SVM) to detect various types of attacks dynamically. We compare our security mechanism to existing distributed approach and present simulation results. The results demonstrate that the proposed security mechanism can effectively identify the types of attacks and achieve a good performance regarding high precision, recall, and accuracy.
Cloud computing is significantly reshaping the computing industry built around core concepts such as virtualization, processing power, connectivity and elasticity to store and share IT resources via a broad network. It has emerged as the key technology that unleashes the potency of Big Data, Internet of Things, Mobile and Web Applications, and other related technologies; but it also comes with its challenges - such as governance, security, and privacy. This paper is focused on the security and privacy challenges of cloud computing with specific reference to user authentication and access management for cloud SaaS applications. The suggested model uses a framework that harnesses the stateless and secure nature of JWT for client authentication and session management. Furthermore, authorized access to protected cloud SaaS resources have been efficiently managed. Accordingly, a Policy Match Gate (PMG) component and a Policy Activity Monitor (PAM) component have been introduced. In addition, other subcomponents such as a Policy Validation Unit (PVU) and a Policy Proxy DB (PPDB) have also been established for optimized service delivery. A theoretical analysis of the proposed model portrays a system that is secure, lightweight and highly scalable for improved cloud resource security and management.
In the multi-cloud tenancy environments, Web Service offers an standard approach for discovering and using capabilities in an environment that transcends ownership domains. This brings into concern the ownership and security related to Web Service governance. Our approach for this issue involves an ESB-integrated middleware for security criteria regulation on Clouds. It uses an attribute-based security policy model for the exhibition of assets consumers' security profiles and deducing service accessing decision. Assets represent computing power/functionality and information/data provided by entities. Experiments show the middleware to bring minor governance burdens on the hardware aspect, as well as better performance with colosum scaling property, dealing well with cumbersome policy files, which is probably the situation of complex composite service scenarios.
Learning analytics open up a complex landscape of privacy and policy issues, which, in turn, influence how learning analytics systems and practices are designed. Research and development is governed by regulations for data storage and management, and by research ethics. Consequently, when moving solutions out the research labs implementers meet constraints defined in national laws and justified in privacy frameworks. This paper explores how the OECD, APEC and EU privacy frameworks seek to regulate data privacy, with significant implications for the discourse of learning, and ultimately, an impact on the design of tools, architectures and practices that now are on the drawing board. A detailed list of requirements for learning analytics systems is developed, based on the new legal requirements defined in the European General Data Protection Regulation, which from 2018 will be enforced as European law. The paper also gives an initial account of how the privacy discourse in Europe, Japan, South-Korea and China is developing and reflects upon the possible impact of the different privacy frameworks on the design of LA privacy solutions in these countries. This research contributes to knowledge of how concerns about privacy and data protection related to educational data can drive a discourse on new approaches to privacy engineering based on the principles of Privacy by Design. For the LAK community, this study represents the first attempt to conceptualise the issues of privacy and learning analytics in a cross-cultural context. The paper concludes with a plan to follow up this research on privacy policies and learning analytics systems development with a new international study.
Fast Health Interoperability Services (FHIR) is the most recent in the line of standards for healthcare resources. FHIR represents different types of medical artifacts as resources and also provides recommendations for their authorized disclosure using web-based protocols including O-Auth and OpenId Connect and also defines security labels. In most cases, Role Based Access Control (RBAC) is used to secure access to FHIR resources. We provide an alternative approach based on Attribute Based Access Control (ABAC) that allows attributes of subjects and objects to take part in authorization decision. Our system allows various stakeholders to define policies governing the release of healthcare data. It also authenticates the end user requesting access. Our system acts as a middle-layer between the end-user and the FHIR server. Our system provides efficient release of individual and batch resources both during normal operations and also during emergencies. We also provide an implementation that demonstrates the feasibility of our approach.
As the use of cloud computing and autonomous computing increases, integrity verification of the software stack used in a system becomes a critical issue. In this paper, we analyze the internal behavior of IMA (Integrity Measurement Architecture), one of the most well-known integrity verification frameworks employed in the Linux kernel. For integrity verification, IMA measures all executables and their configuration files in a trusty manner using TPM (Trust Platform Module). Our analysis reveals that there are two obstacles in IMA, measurement overhead and nondeterminism. To address these problems, we propose two novel techniques, called batch extend and core measurement. The former is a technique that accumulates the measured values of executables/files and extends them into TPM in a batch fashion. The second technique measures some specified executables/files only so that it verifies the core integrity of a system in which a user or a remote party is interested. Real implementation based evaluation shows that our proposal can reduce the booting time from 122 to 23 seconds, while supporting the same integrity verification capability of the default IMA policy.
Mobile application offloading, with the purpose of extending battery lifetime and increasing performance has been intensively discussed recently, resulting in various different solutions: mobile device clones operated as virtual machines in the cloud, simultaneously running applications on the mobile device and on a distant server, as well as flexible solutions dynamically acquiring other mobile devices' resources in the user's surrounding. Existing solutions have gaps in the fields of data security and application security. These gaps can be closed by integrating data usage policies, as well as application-flow policies. In this paper, we propose and evaluate a novel approach of integrating XACML into existing mobile application offloading-frameworks. Data owners remain in full control of their data, still, technologies like device-to-device offloading can be used.
Logic locking has been conceived as a promising proactive defense strategy against intellectual property (IP) piracy, counterfeiting, hardware Trojans, reverse engineering, and overbuilding attacks. Yet, various attacks that use a working chip as an oracle have been launched on logic locking to successfully retrieve its secret key, undermining the defense of all existing locking techniques. In this paper, we propose stripped-functionality logic locking (SFLL), which strips some of the functionality of the design and hides it in the form of a secret key(s), thereby rendering on-chip implementation functionally different from the original one. When loaded onto an on-chip memory, the secret keys restore the original functionality of the design. Through security-aware synthesis that creates a controllable mismatch between the reverse-engineered netlist and original design, SFLL provides a quantifiable and provable resilience trade-off between all known and anticipated attacks. We demonstrate the application of SFLL to large designs (textgreater100K gates) using a computer-aided design (CAD) framework that ensures attaining the desired security level at minimal implementation cost, 8%, 5%, and 0.5% for area, power, and delay, respectively. In addition to theoretical proofs and simulation confirmation of SFLL's security, we also report results from the silicon implementation of SFLL on an ARM Cortex-M0 microprocessor in 65nm technology.