Biblio
Cloud computing is a technological breakthrough in computing. It has affected each and every part of the information technology, from infrastructure to the software deployment, from programming to the application maintenance. Cloud offers a wide array of solutions for the current day computing needs aided with benefits like elasticity, affordability and scalability. But at the same time, the incidence of malicious cyber activity is progressively increasing at an unprecedented rate posing critical threats to both government and enterprise IT infrastructure. Account or service hijacking is a kind of identity theft and has evolved to be one of the most rapidly increasing types of cyber-attack aimed at deceiving end users. This paper presents an in depth analysis of a cloud security incident that happened on The New York Times online using account hijacking. Further, we present incident prevention methods and detailed incident prevention plan to stop future occurrence of such incidents.
There has been a rampant surge in compromise of consumer grade small scale routers in the last couple of years. Attackers are able to manipulate the Domain Name Space (DNS) settings of these devices hence making them capable of initiating different man-in-the-middle attacks. By this study we aim to explore and comprehend the current state of these attacks. Focusing on the Indian Autonomous System Number (ASN) space, we performed scans over 3 months to successfully find vulnerable routers and extracted the DNS information from these vulnerable routers. In this paper we present the methodology followed for scanning, a detailed analysis report of the information we were able to collect and an insight into the current trends in the attack patterns. We conclude by proposing recommendations for mitigating these attacks.
The future of ambient assisted living (AAL) especially eHealthcare almost depends on the smart objects that are part of the Internet of things (IoT). In our AAL scenario, these objects collect and transfer real-time information about the patients to the hospital server with the help of Wireless Mesh Network (WMN). Due to the multi-hop nature of mesh networks, it is possible for an adversary to reroute the network traffic via many denial of service (DoS) attacks, and hence affect the correct functionality of the mesh routing protocol. In this paper, based on a comparative study, we choose the most suitable secure mesh routing protocol for IoT-based AAL applications. Then, we analyze the resilience of this protocol against DoS attacks. Focusing on the hello flooding attack, the protocol is simulated and analyzed in terms of data packet delivery ratio, delay, and throughput. Simulation results show that the chosen protocol is totally resilient against DoS attack and can be one of the best candidates for secure routing in IoT-based AAL applications.
Wireless Mesh Networks (WMNs) are being considered as most adequate for deployment in the Neighborhood Area Network (NAN) domain of the smart grid infrastructure because their features such as self-organizing, scalability and cost-efficiency complement the NAN requirements. To enhance the security of the WMNs, the key refreshment strategy for the Simultaneous Authentication of Equals (SAE) or the Efficient Mesh Security Association (EMSA) protocols is an efficient way to make the network more resilient against the cyber-attacks. However, a security vulnerability is discovered in the EMSA protocol when using the key refreshment strategy. The first message of the Mesh Key Holder Security Handshake (MKHSH) can be forged and replayed back in the next cycles of the key refreshment leading to a Denial of Service (DoS) attack. In this paper, a simple one-way hash function based scheme is proposed to prevent the unprotected message from being replayed together with an enhancement to the key refreshment scheme to improve the resilience of the MKHSH. The Protocol Composition Logic (PCL) is used to verify the logical correctness of the proposed scheme, while the Process Analysis Toolkit (PAT) is used to evaluate the security functionality against the malicious attacks.
Due to the growing advancement of crime ware services, the computer and network security becomes a crucial issue. Detecting sensitive data exfiltration is a principal component of each information protection strategy. In this research, a Multi-Level Data Exfiltration Detection (MLDED) system that can handle different types of insider data leakage threats with staircase difficulty levels and their implications for the organization environment has been proposed, implemented and tested. The proposed system detects exfiltration of data outside an organization information system, where the main goal is to use the detection results of a MLDED system for digital forensic purposes. MLDED system consists of three major levels Hashing, Keywords Extraction and Labeling. However, it is considered only for certain type of documents such as plain ASCII text and PDF files. In response to the challenging issue of identifying insider threats, a forensic readiness data exfiltration system is designed that is capable of detecting and identifying sensitive information leaks. The results show that the proposed system has an overall detection accuracy of 98.93%.
Since security is increasingly the principal concern in the conception and implementation of software systems, it is very important that the security mechanisms are designed so as to protect the computer systems against cyber attacks. An Intrusion Tolerance Systems play a crucial role in maintaining the service continuity and enhancing the security compared with the traditional security. In this paper, we propose to combine a preventive maintenance with existing intrusion tolerance system to improve the system security. We use a semi-Markov process to model the system behavior. We quantitatively analyze the system security using the measures such as system availability, Mean Time To Security Failure and cost. The numerical analysis is presented to show the feasibility of the proposed approach.
Cyber crime investigation is the integration of two technologies named theoretical methodology and second practical tools. First is the theoretical digital forensic methodology that encompasses the steps to investigate the cyber crime. And second technology is the practically development of the digital forensic tool which sequentially and systematically analyze digital devices to extract the evidence to prove the crime. This paper explores the development of digital forensic framework, combine the advantages of past twenty five forensic models and generate a algorithm to create a new digital forensic model. The proposed model provides the following advantages, a standardized method for investigation, the theory of model can be directly convert into tool, a history lookup facility, cost and time minimization, applicable to any type of digital crime investigation.
Today, by widely spread of information technology (IT) usage, E-commerce security and its related legislations are very critical issue in information technology and court law. There is a consensus that security matters are the significant foundation of e-commerce, electronic consumers, and firms' privacy. While e-commerce networks need a policy for security privacy, they should be prepared for a simple consumer friendly infrastructure. Hence it is necessary to review the theoretical models for revision. In This theory review, we embody a number of former articles that cover security of e-commerce and legislation ambit at the individual level by assessing five criteria. Whether data of articles provide an effective strategy for secure-protection challenges in e-commerce and e-consumers. Whether provisions clearly remedy precedents or they need to flourish? This paper focuses on analyzing the former discussion regarding e-commerce security and existence legislation toward cyber-crime activity of e-commerce the article also purports recommendation for subsequent research which is indicate that through secure factors of e-commerce we are able to fill the vacuum of its legislation.
In the pursuit of cyber security for organizations, there are tens of thousands of tools, guidelines, best practices, forensics, platforms, toolkits, diagnostics, and analytics available. However according to the Verizon 2014 Data Breach Report: “after analysing 10 years of data... organizations cannot keep up with cyber crime-and the bad guys are winning.” Although billions are expended worldwide on cyber security, organizations struggle with complexity, e.g., the NISTIR 7628 guidelines for cyber-physical systems are over 600 pages of text. And there is a lack of information visibility. Organizations must bridge the gap between technical cyber operations and the business/social priorities since both sides are essential for ensuring cyber security. Identifying visual structures for information synthesis could help reduce the complexity while increasing information visibility within organizations. This paper lays the foundation for investigating such visual structures by first identifying where current visual structures are succeeding or failing. To do this, we examined publicly available analyses related to three types of security issues: 1) epidemic, 2) cyber attacks on an industrial network, and 3) threat of terrorist attack. We found that existing visual structures are largely inadequate for reducing complexity and improving information visibility. However, based on our analysis, we identified a range of different visual structures, and their possible trade-offs/limitation is framing strategies for cyber policy. These structures form the basis of evolving visualization to support information synthesis for policy actions, which has rarely been done but is promising based on the efficacy of existing visualizations for cyber incident detection, attacks, and situation awareness.
The Center for Strategic and International Studies estimates the annual cost from cyber crime to be more than \$400 billion. Most notable is the recent digital identity thefts that compromised millions of accounts. These attacks emphasize the security problems of using clonable static information. One possible solution is the use of a physical device known as a Physically Unclonable Function (PUF). PUFs can be used to create encryption keys, generate random numbers, or authenticate devices. While the concept shows promise, current PUF implementations are inherently problematic: inconsistent behavior, expensive, susceptible to modeling attacks, and permanent. Therefore, we propose a new solution by which an unclonable, dynamic digital identity is created between two communication endpoints such as mobile devices. This Physically Unclonable Digital ID (PUDID) is created by injecting a data scrambling PUF device at the data origin point that corresponds to a unique and matching descrambler/hardware authentication at the receiving end. This device is designed using macroscopic, intentional anomalies, making them inexpensive to produce. PUDID is resistant to cryptanalysis due to the separation of the challenge response pair and a series of hash functions. PUDID is also unique in that by combining the PUF device identity with a dynamic human identity, we can create true two-factor authentication. We also propose an alternative solution that eliminates the need for a PUF mechanism altogether by combining tamper resistant capabilities with a series of hash functions. This tamper resistant device, referred to as a Quasi-PUDID (Q-PUDID), modifies input data, using a black-box mechanism, in an unpredictable way. By mimicking PUF attributes, Q-PUDID is able to avoid traditional PUF challenges thereby providing high-performing physical identity assurance with or without a low performing PUF mechanism. Three different application scenarios with mobile devices for PUDID and Q-PUDI- have been analyzed to show their unique advantages over traditional PUFs and outline the potential for placement in a host of applications.
The initiative to protect against future cyber crimes requires a collaborative effort from all types of agencies spanning industry, academia, federal institutions, and military agencies. Therefore, a Cybersecurity Information Exchange (CYBEX) framework is required to facilitate breach/patch related information sharing among the participants (firms) to combat cyber attacks. In this paper, we formulate a non-cooperative cybersecurity information sharing game that can guide: (i) the firms (players)1 to independently decide whether to “participate in CYBEX and share” or not; (ii) the CYBEX framework to utilize the participation cost dynamically as incentive (to attract firms toward self-enforced sharing) and as a charge (to increase revenue). We analyze the game from an evolutionary game-theoretic strategy and determine the conditions under which the players' self-enforced evolutionary stability can be achieved. We present a distributed learning heuristic to attain the evolutionary stable strategy (ESS) under various conditions. We also show how CYBEX can wisely vary its pricing for participation to increase sharing as well as its own revenue, eventually evolving toward a win-win situation.
With the growth of the Internet, web applications are becoming very popular in the user communities. However, the presence of security vulnerabilities in the source code of these applications is raising cyber crime rate rapidly. It is required to detect and mitigate these vulnerabilities before their exploitation in the execution environment. Recently, Open Web Application Security Project (OWASP) and Common Vulnerabilities and Exposures (CWE) reported Cross-Site Scripting (XSS) as one of the most serious vulnerabilities in the web applications. Though many vulnerability detection approaches have been proposed in the past, existing detection approaches have the limitations in terms of false positive and false negative results. This paper proposes a context-sensitive approach based on static taint analysis and pattern matching techniques to detect and mitigate the XSS vulnerabilities in the source code of web applications. The proposed approach has been implemented in a prototype tool and evaluated on a public data set of 9408 samples. Experimental results show that proposed approach based tool outperforms over existing popular open source tools in the detection of XSS vulnerabilities.
Governments needs reliable data on crime in order to both devise adequate policies, and allocate the correct revenues so that the measures are cost-effective, i.e., The money spent in prevention, detection, and handling of security incidents is balanced with a decrease in losses from offences. The analysis of the actual scenario of government actions in cyber security shows that the availability of multiple contrasting figures on the impact of cyber-attacks is holding back the adoption of policies for cyber space as their cost-effectiveness cannot be clearly assessed. The most relevant literature on the topic is reviewed to highlight the research gaps and to determine the related future research issues that need addressing to provide a solid ground for future legislative and regulatory actions at national and international levels.
The development of internet comes with the other domain that is cyber-crime. The record and intelligently can be exposed to a user of illegal activity so that it has become important to make the technology reliable. Phishing techniques include domain of email messages. Phishing emails have hosted such a phishing website, where a click on the URL or the malware code as executing some actions to perform is socially engineered messages. Lexically analyzing the URLs can enhance the performance and help to differentiate between the original email and the phishing URL. As assessed in this study, in addition to textual analysis of phishing URL, email classification is successful and results in a highly precise anti phishing.
The rise of malware attack and data leakage is putting the Internet at a higher risk. Digital forensic examiners responsible for cyber security incident need to continually update their processes, knowledge and tools due to changing technology. These attack activities can be investigated by means of Digital Triage Forensics (DTF) methodologies. DTF is a procedural model for the crime scene investigation of digital forensic applications. It takes place as a way of gathering quick intelligence, and presents methods of conducting pre/post-blast investigations. A DTF framework of Window malware forensic toolkit is further proposed. It is also based on ISO/IEC 27037: 2012 - guidelines for specific activities in the handling of digital evidence. The argument is made for a careful use of digital forensic investigations to improve the overall quality of expert examiners. This solution may improve the speed and quality of pre/post-blast investigations. By considering how triage solutions are being implemented into digital investigations, this study presents a critical analysis of malware forensics. The analysis serves as feedback for integrating digital forensic considerations, and specifies directions for further standardization efforts.
Certain crimes are difficult to be committed by individuals but carefully organised by group of associates and affiliates loosely connected to each other with a single or small group of individuals coordinating the overall actions. A common starting point in understanding the structural organisation of criminal groups is to identify the criminals and their associates. Situations arise in many criminal datasets where there is no direct connection among the criminals. In this paper, we investigate ties and community structure in crime data in order to understand the operations of both traditional and cyber criminals, as well as to predict the existence of organised criminal networks. Our contributions are twofold: we propose a bipartite network model for inferring hidden ties between actors who initiated an illegal interaction and objects affected by the interaction, we then validate the method in two case studies on pharmaceutical crime and underground forum data using standard network algorithms for structural and community analysis. The vertex level metrics and community analysis results obtained indicate the significance of our work in understanding the operations and structure of organised criminal networks which were not immediately obvious in the data. Identifying these groups and mapping their relationship to one another is essential in making more effective disruption strategies in the future.
Nowadays, Memory Forensics is more acceptable in Cyber Forensics Investigation because malware authors and attackers choose RAM or physical memory for storing critical information instead of hard disk. The volatile physical memory contains forensically relevant artifacts such as user credentials, chats, messages, running processes and its details like used dlls, files, command and network connections etc. Memory Forensics involves acquiring the memory dump from the Suspect's machine and analyzing the acquired dump to find out crucial evidence with the help of windows pre-defined kernel data structures. While retrieving different artifacts from these data structures, finding the network connections from Windows 7 system's memory dump is a very challenging task. This is because the data structures that store network connections in earlier versions of Windows are not present in Windows 7. In this paper, a methodology is described for efficiently retrieving details of network related activities from Windows 7 x64 memory dump. This includes remote and local IP addresses and associated port information corresponding to each of the running processes. This can provide crucial information in cyber crime investigation.
- « first
- ‹ previous
- 1
- 2
- 3