Biblio
Despite the additional protection it affords, two-factor authentication (2FA) adoption reportedly remains low. To better understand 2FA adoption and its barriers, we observed the deployment of a 2FA system at Carnegie Mellon University (CMU). We explore user behaviors and opinions around adoption, surrounding a mandatory adoption deadline. Our results show that (a) 2FA adopters found it annoying, but fairly easy to use, and believed it made their accounts more secure; (b) experience with CMU Duo often led to positive perceptions, sometimes translating into 2FA adoption for other accounts; and, (c) the differences between users required to adopt 2FA and those who adopted voluntarily are smaller than expected. We also explore the relationship between different usage patterns and perceived usability, and identify user misconceptions, insecure practices, and design issues. We conclude with recommendations for large-scale 2FA deployments to maximize adoption, focusing on implementation design, use of adoption mandates, and strategic messaging.
Mobile two-factor authentication (2FA) has become commonplace along with the popularity of mobile devices. Current mobile 2FA solutions all require some form of user effort which may seriously affect the experience of mobile users, especially senior citizens or those with disability such as visually impaired users. In this paper, we propose Proximity-Proof, a secure and usable mobile 2FA system without involving user interactions. Proximity-Proof automatically transmits a user's 2FA response via inaudible OFDM-modulated acoustic signals to the login browser. We propose a novel technique to extract individual speaker and microphone fingerprints of a mobile device to defend against the powerful man-in-the-middle (MiM) attack. In addition, Proximity-Proof explores two-way acoustic ranging to thwart the co-located attack. To the best of our knowledge, Proximity-Proof is the first mobile 2FA scheme resilient to the MiM and co-located attacks. We empirically analyze that Proximity-Proof is at least as secure as existing mobile 2FA solutions while being highly usable. We also prototype Proximity-Proof and confirm its high security, usability, and efficiency through comprehensive user experiments.
To improve the security of user-chosen Android screen lock patterns, we propose a novel system-guided pattern lock scheme called "SysPal" that mandates the use of a small number of randomly selected points while selecting a pattern. Users are given the freedom to use those mandated points at any position. We conducted a large-scale online study with 1,717 participants to evaluate the security and usability of three SysPal policies, varying the number of mandatory points that must be used (upon selecting a pattern) from one to three. Our results suggest that the two SysPal policies that mandate the use of one and two points can help users select significantly more secure patterns compared to the current Android policy: 22.58% and 23.19% fewer patterns were cracked. Those two SysPal policies, however, did not show any statistically significant inferiority in pattern recall success rate (the percentage of participants who correctly recalled their pattern after 24 hours). In our lab study, we asked participants to install our screen unlock application on their own Android device, and observed their real-life phone unlock behaviors for a day. Again, our lab study did not show any statistically significant difference in memorability for those two SysPal policies compared to the current Android policy.
In this paper we present a case study of applying fitness dimensions in API design assessment. We argue that API assessment is company specific and should take into consideration various stakeholders in the API ecosystem. We identified new fitness dimensions and introduced the notion of design considerations for fitness dimensions such as priorities, tradeoffs, and technical versus cognitive classification.
Over the last years, the number of rather simple interconnected devices in nonindustrial scenarios (e.g., for home automation) has steadily increased. For ease of use, the overall system security is often neglected. Before the Internet of Things (IoT) reaches the same distribution rate and impact in industrial applications, where security is crucial for success, solutions that combine usability, scalability, and security are required. We develop such a security system, mainly targeting sensor modules equipped with Radio Frequency IDentification (RFID) tags which we leverage to increase the security level. More specifically, we consider a network based on Message Queue Telemetry Transport (MQTT) which is a widely adopted protocol for the IoT.
The Sensor Web is evolving into a complex information space, where large volumes of sensor observation data are often consumed by complex applications. Provenance has become an important issue in the Sensor Web, since it allows applications to answer “what”, “when”, “where”, “who”, “why”, and “how” queries related to observations and consumption processes, which helps determine the usability and reliability of data products. This paper investigates characteristics and requirements of provenance in the Sensor Web and proposes an interoperable approach to building a provenance model for the Sensor Web. Our provenance model extends the W3C PROV Data Model with Sensor Web domain vocabularies. It is developed using Semantic Web technologies and thus allows provenance information of sensor observations to be exposed in the Web of Data using the Linked Data approach. A use case illustrates the applicability of the approach.
Provenance describes detailed information about the history of a piece of data, containing the relationships among elements such as users, processes, jobs, and workflows that contribute to the existence of data. Provenance is key to supporting many data management functionalities that are increasingly important in operations such as identifying data sources, parameters, or assumptions behind a given result; auditing data usage; or understanding details about how inputs are transformed into outputs. Despite its importance, however, provenance support is largely underdeveloped in highly parallel architectures and systems. One major challenge is the demanding requirements of providing provenance service in situ. The need to remain lightweight and to be always on often conflicts with the need to be transparent and offer an accurate catalog of details regarding the applications and systems. To tackle this challenge, we introduce a lightweight provenance service, called LPS, for high-performance computing (HPC) systems. LPS leverages a kernel instrument mechanism to achieve transparency and introduces representative execution and flexible granularity to capture comprehensive provenance with controllable overhead. Extensive evaluations and use cases have confirmed its efficiency and usability. We believe that LPS can be integrated into current and future HPC systems to support a variety of data management needs.
An important topic in cybersecurity is validating Active Indicators (AI), which are stimuli that can be implemented in systems to trigger responses from individuals who might or might not be Insider Threats (ITs). The way in which a person responds to the AI is being validated for identifying a potential threat and a non-threat. In order to execute this validation process, it is important to create a paradigm that allows manipulation of AIs for measuring response. The scenarios are posed in a manner that require participants to be situationally aware that they are being monitored and have to act deceptively. In particular, manipulations in the environment should no differences between conditions relative to immersion and ease of use, but the narrative should be the driving force behind non-deceptive and IT responses. The success of the narrative and the simulation environment to induce such behaviors is determined by immersion, usability, and stress response questionnaires, and performance. Initial results of the feasibility to use a narrative reliant upon situation awareness of monitoring and evasion are discussed.
This paper presents a framework for privacy-preserving video delivery system to fulfill users' privacy demands. The proposed framework leverages the inference channels in sensitive behavior prediction and object tracking in a video surveillance system for the sequence privacy protection. For such a goal, we need to capture different pieces of evidence which are used to infer the identity. The temporal, spatial and context features are extracted from the surveillance video as the observations to perceive the privacy demands and their correlations. Taking advantage of quantifying various evidence and utility, we let users subscribe videos with a viewer-dependent pattern. We implement a prototype system for off-line and on-line requirements in two typical monitoring scenarios to construct extensive experiments. The evaluation results show that our system can efficiently satisfy users' privacy demands while saving over 25% more video information compared to traditional video privacy protection schemes.
Augmented reality is poised to become a dominant computing paradigm over the next decade. With promises of three-dimensional graphics and interactive interfaces, augmented reality experiences will rival the very best science fiction novels. This breakthrough also brings in unique challenges on how users can authenticate one another to share rich content between augmented reality headsets. Traditional authentication protocols fall short when there is no common central entity or when access to the central authentication server is not available or desirable. Looks Good To Me (LGTM) is an authentication protocol that leverages the unique hardware and context provided with augmented reality headsets to bring innate human trust mechanisms into the digital world to solve authentication in a usable and secure way. LGTM works over point to point wireless communication so users can authenticate one another in a variety of circumstances and is designed with usability at its core, requiring users to perform only two actions: one to initiate and one to confirm. Users intuitively authenticate one another, using seemingly only each other's faces, but under the hood LGTM uses a combination of facial recognition and wireless localization to bootstrap trust from a wireless signal, to a location, to a face, for secure and usable authentication.
To prevent unauthorized parties from accessing data stored on their smartphones, users have the option of enabling a "lock screen" that requires a secret code (e.g., PIN, drawing a pattern, or biometric) to gain access to their devices. We present a detailed analysis of the smartphone locking mechanisms currently available to billions of smartphone users worldwide. Through a month-long field study, we logged events from a panel of users with instrumented smartphones (N=134). We are able to show how existing lock screen mechanisms provide users with distinct tradeoffs between usability (unlocking speed vs. unlocking frequency) and security. We find that PIN users take longer to enter their codes, but commit fewer errors than pattern users, who unlock more frequently and are very prone to errors. Overall, PIN and pattern users spent the same amount of time unlocking their devices on average. Additionally, unlock performance seemed unaffected for users enabling the stealth mode for patterns. Based on our results, we identify areas where device locking mechanisms can be improved to result in fewer human errors – increasing usability – while also maintaining security.
Sensitive data such as text messages, contact lists, and personal information are stored on mobile devices. This makes authentication of paramount importance. More security is needed on mobile devices since, after point-of-entry authentication, the user can perform almost all tasks without having to re-authenticate. For this reason, many authentication methods have been suggested to improve the security of mobile devices in a transparent and continuous manner, providing a basis for convenient and secure user re-authentication. This paper presents a comprehensive analysis and literature review on transparent authentication systems for mobile device security. This review indicates a need to investigate when to authenticate the mobile user by focusing on the sensitivity level of the application, and understanding whether a certain application may require a protection or not.
User authentication depends largely on the concept of passwords. However, users find it difficult to remember alphanumerical passwords over time. When user is required to choose a secure password, they tend to choose an easy, short and insecure password. Graphical password method is proposed as an alternative solution to text-based alphanumerical passwords. The reason of such proposal is that human brain is better in recognizing and memorizing pictures compared to traditional alphanumerical string. Therefore, in this paper, we propose a conceptual framework to better understand the user performance for new high-end graphical password method. Our proposed framework is based on hybrid approach combining different features into one. The user performance experimental analysis pointed out the effectiveness of the proposed framework.
Software components are software units designed to interact with other independently developed software components. These components are assembled by third parties into software applications. The success of final software applications largely depends upon the selection of appropriate and easy to fit components in software application according to the need of customer. It is primary requirement to evaluate the quality of components before using them in the final software application system. All the quality characteristics may not be of same significance for a particular software application of a specific domain. Therefore, it is necessary to identify only those characteristics/ sub-characteristics, which may have higher importance over the others. Analytical Network Process (ANP) is used to solve the decision problem, where attributes of decision parameters form dependency networks. The objective of this paper is to propose ANP based model to prioritize the characteristics /sub-characteristics of quality and to o estimate the numeric value of software quality.
Many systems rely on passwords for authentication. Due to numerous accounts for different services, users have to choose and remember a significant number of passwords. Password-Manager applications address this issue by storing the user's passwords. They are especially useful on mobile devices, because of the ubiquitous access to the account passwords. Password-Managers often use key derivation functions to convert a master password into a cryptographic key suitable for encrypting the list of passwords, thus protecting the passwords against unauthorized, off-line access. Therefore, design and implementation flaws in the key derivation function impact password security significantly. Design and implementation problems in the key derivation function can render the encryption on the password list useless, by for example allowing efficient bruteforce attacks, or - even worse - direct decryption of the stored passwords. In this paper, we analyze the key derivation functions of popular Android Password-Managers with often startling results. With this analysis, we want to raise the awareness of developers of security critical apps for security, and provide an overview about the current state of implementation security of security-critical applications.
As information security became an increasing concern for software developers and users, requirements engineering (RE) researchers brought new insight to security requirements. Security requirements aim to address security at the early stages of system design while accommodating the complex needs of different stakeholders. Meanwhile, other research communities, such as usable privacy and security, have also examined these requirements with specialized goal to make security more usable for stakeholders from product owners, to system users and administrators. In this paper we report results from conducting a literature survey to compare security requirements research from RE Conferences with the Symposium on Usable Privacy and Security (SOUPS). We report similarities between the two research areas, such as common goals, technical definitions, research problems, and directions. Further, we clarify the differences between these two communities to understand how they can leverage each other’s insights. From our analysis, we recommend new directions in security requirements research mainly to expand the meaning of security requirements in RE to reflect the technological advancements that the broader field of security is experiencing. These recommendations to encourage cross- collaboration with other communities are not limited to the security requirements area; in fact, we believe they can be generalized to other areas of RE.
- « first
- ‹ previous
- 1
- 2
- 3