Biblio
As the Internet of Things (IoT) continues to expand into every facet of our daily lives, security researchers have warned of its myriad security risks. While denial-of-service attacks and privacy violations have been at the forefront of research, covert channel communications remain an important concern. Utilizing a Bluetooth controlled light bulb, we demonstrate three separate covert channels, consisting of current utilization, luminosity and hue. To study the effectiveness of these channels, we implement exfiltration attacks using standard off-the-shelf smart bulbs and RGB LEDs at ranges of up to 160 feet. We analyze the identified channels for throughput, generality and stealthiness, and report transmission speeds of up to 832 bps.
The clear, social, and dark web have lately been identified as rich sources of valuable cyber-security information that -given the appropriate tools and methods-may be identified, crawled and subsequently leveraged to actionable cyber-threat intelligence. In this work, we focus on the information gathering task, and present a novel crawling architecture for transparently harvesting data from security websites in the clear web, security forums in the social web, and hacker forums/marketplaces in the dark web. The proposed architecture adopts a two-phase approach to data harvesting. Initially a machine learning-based crawler is used to direct the harvesting towards websites of interest, while in the second phase state-of-the-art statistical language modelling techniques are used to represent the harvested information in a latent low-dimensional feature space and rank it based on its potential relevance to the task at hand. The proposed architecture is realised using exclusively open-source tools, and a preliminary evaluation with crowdsourced results demonstrates its effectiveness.
Witnessing the increasingly pervasive deployment of security video surveillance systems(VSS), more and more individuals have become concerned with the issues of privacy violations. While the majority of the public have a favorable view of surveillance in terms of crime deterrence, individuals do not accept the invasive monitoring of their private life. To date, however, there is not a lightweight and secure privacy-preserving solution for video surveillance systems. The recent success of blockchain (BC) technologies and their applications in the Internet of Things (IoT) shed a light on this challenging issue. In this paper, we propose a Lightweight, Blockchain-based Privacy protection (Lib-Pri) scheme for surveillance cameras at the edge. It enables the VSS to perform surveillance without compromising the privacy of people captured in the videos. The Lib-Pri system transforms the deployed VSS into a system that functions as a federated blockchain network capable of carrying out integrity checking, blurring keys management, feature sharing, and video access sanctioning. The policy-based enforcement of privacy measures is carried out at the edge devices for real-time video analytics without cluttering the network.
In the modern security-conscious world, Deep Packet Inspection (DPI) proxies are increasingly often used on industrial and enterprise networks to perform TLS unwrapping on all outbound connections. However, enabling TLS unwrapping requires local devices to have the DPI proxy Certificate Authority certificates installed. While for conventional computing devices this is addressed via enterprise management, it's a difficult problem for Internet of Things ("IoT") devices which are generally not under enterprise management, and may not even be capable of it due to their resource-constrained nature. Thus, for typical IoT devices, being installed on a network with DPI requires either manual device configuration or custom DPI proxy configuration, both of which solutions have significant shortcomings. This poses a serious challenge to the deployment of IoT devices on DPI-enabled intranets. The authors propose a solution to this problem: a method of installing on IoT devices the CA certificates for DPI proxy CAs, as well as other security configuration ("security bootstrapping"). The proposed solution respects the DPI policies, while allowing the commissioning of IoT and IIoT devices without the need for additional manual configuration either at device scope or at network scope. This is accomplished by performing the bootstrap operation over unsecured connection, and downloading certificates using TLS validation at application level. The resulting solution is light-weight and secure, yet does not require validation of the DPI proxy's CA certificates in order to perform the security bootstrapping, thus avoiding the chicken-and-egg problem inherent in using TLS on DPI-enabled intranets.
In the past few years, visual information collection and transmission is increased significantly for various applications. Smart vehicles, service robotic platforms and surveillance cameras for the smart city applications are collecting a large amount of visual data. The preservation of the privacy of people presented in this data is an important factor in storage, processing, sharing and transmission of visual data across the Internet of Robotic Things (IoRT). In this paper, a novel anonymisation method for information security and privacy preservation in visual data in sharing layer of the Web of Robotic Things (WoRT) is proposed. The proposed framework uses deep neural network based semantic segmentation to preserve the privacy in video data base of the access level of the applications and users. The data is anonymised to the applications with lower level access but the applications with higher legal access level can analyze and annotated the complete data. The experimental results show that the proposed method while giving the required access to the authorities for legal applications of smart city surveillance, is capable of preserving the privacy of the people presented in the data.
It is important to provide strong security for IoT devices with limited security related resources. We introduce a new dynamic security agent management framework, which dynamically chooses the best security agent to support security functions depending on the applications' security requirements of IoT devices in the system. This framework is designed to overcome the challenges including high computation costs, multiple security protocol compatibility, and efficient energy management in IoT system.
This paper presents an overview of the H2020 project VESSEDIA [9] aimed at verifying the security and safety of modern connected systems also called IoT. The originality relies in using Formal Methods inherited from high-criticality applications domains to analyze the source code at different levels of intensity, to gather possible faults and weaknesses. The analysis methods are mostly exhaustive an guarantee that, after analysis, the source code of the application is error-free. This paper is structured as follows: after an introductory section 1 giving some factual data, section 2 presents the aims and the problems addressed; section 3 describes the project's use-cases and section 4 describes the proposed approach for solving these problems and the results achieved until now; finally, section 5 discusses some remaining future work.
The progressed computational abilities of numerous asset compelled gadgets mobile phones have empowered different research zones including picture recovery from enormous information stores for various IoT applications. The real difficulties for picture recovery utilizing cell phones in an IoT situation are the computational intricacy and capacity. To manage enormous information in IoT condition for picture recovery a light-weighted profound learning base framework for vitality obliged gadgets. The framework initially recognizes and crop face areas from a picture utilizing Viola-Jones calculation with extra face classifier to take out the identification issue. Besides, the utilizes convolutional framework layers of a financially savvy pre-prepared CNN demonstrate with characterized highlights to speak to faces. Next, highlights of the huge information vault are listed to accomplish a quicker coordinating procedure for constant recovery. At long last, Euclidean separation is utilized to discover comparability among question and archive pictures. For exploratory assessment, we made a nearby facial pictures dataset it including equally single and gathering face pictures. In the dataset can be utilized by different specialists as a scale for examination with other ongoing facial picture recovery frameworks. The trial results demonstrate that our planned framework beats other cutting edge highlight extraction strategies as far as proficiency and recovery for IoT-helped vitality obliged stages.
We consider the problem of attack detection for IoT networks based only on passively collected network parameters. For the first time in the literature, we develop a blind attack detection method based on data conformity evaluation. Network parameters collected passively, are converted to their conformity values through iterative projections on refined L1-norm tensor subspaces. We demonstrate our algorithmic development in a case study for a simulated star topology network. Type of attack, affected devices, as well as, attack time frame can be easily identified.
The amount of connected devices in the industrial environment is growing continuously, due to the ongoing demands of new features like predictive maintenance. New business models require more data, collected by IIoT edge node sensors based on inexpensive and low performance Microcontroller Units (MCUs). A negative side effect of this rise of interconnections is the increased attack surface, enabled by a larger network with more network services. Attaching badly documented and cheap devices to industrial networks often without permission of the administrator even further increases the security risk. A decent method to monitor the network and detect “unwanted” devices is network scanning. Typically, this scanning procedure is executed by a computer or server in each sub-network. In this paper, we introduce network scanning and mapping as a building block to scan directly from the Industrial Internet of Things (IIoT) edge node devices. This module scans the network in a pseudo-random periodic manner to discover devices and detect changes in the network structure. Furthermore, we validate our approach in an industrial testbed to show the feasibility of this approach.
The Internet of Things (IoT) is connecting the world in a way humanity has never seen before. With applications in healthcare, agricultural, transportation, and more, IoT devices help in bridging the gap between the physical and the virtual worlds. These devices usually carry sensitive data which requires security and protection in transit and rest. However, the limited power and energy consumption make it harder and more challenging to implementing security protocols, especially Public-Key Cryptosystems (PKC). In this paper, we present a hardware/software co-design for Elliptic-Curve Cryptography (ECC) PKC suitable for lightweight devices. We present the implementation results for our design on an edge node to be used for indoor localization in a healthcare facilities.
Public key cryptography plays a vital role in many information and communication systems for secure data transaction, authentication, identification, digital signature, and key management purpose. Elliptic curve cryptography (ECC) is a widely used public key cryptographic algorithm. In this paper, we propose a hardware-software codesign implementation of the ECC cipher. The algorithm is modelled in C language. Compute-intensive components are identified for their efficient hardware implementations. In the implementation, residue number system (RNS) with projective coordinates are utilized for performing the required arithmetic operations. To manage the hardware-software codeign in an integrated fashion Xilinx platform studio tool and Virtex-5 xc5vfx70t device based platform is utilized. An application of the implementation is demonstrated for encryption of text and its respective decryption over prime fields. The design is useful for providing an adequate level of security for IoTs.
Due to greater network capacity and faster data speed, fifth generation (5G) technology is expected to provide a huge improvement in Internet of Things (IoTs) applications, Augmented & Virtual Reality (AR/VR) technologies, and Machine Type Communications (MTC). Consumer will be able to send/receive high quality multimedia data. For the protection of sensitive multimedia data, a large number of encryption algorithms are available, however, these encryption schemes does not provide light-weight encryption solution for real-time application requirements. This paper proposes a new multi-chaos computational efficient encryption for digital images. In the proposed scheme, plaintext image is transformed using Lifting Wavelet Transform (LWT) and only one-fourth part of the transformed image is encrypted using light-weight Chebyshev and Intertwining maps. Both chaotic maps were chaotically coupled for the confusion and diffusion processes which further enhances the image security. Encryption/decryption speed and other security measures such as correlation coefficient, entropy, Number of Pixels Change Rate (NPCR), contrast, energy, homogeneity confirm the superiority of the proposed light-weight encryption scheme.
This work takes a novel approach to classifying the behavior of devices by exploiting the single-purpose nature of IoT devices and analyzing the complexity and variance of their network traffic. We develop a formalized measurement of complexity for IoT devices, and use this measurement to precisely tune an anomaly detection algorithm for each device. We postulate that IoT devices with low complexity lead to a high confidence in their behavioral model and have a correspondingly more precise decision boundary on their predicted behavior. Conversely, complex general purpose devices have lower confidence and a more generalized decision boundary. We show that there is a positive correlation to our complexity measure and the number of outliers found by an anomaly detection algorithm. By tuning this decision boundary based on device complexity we are able to build a behavioral framework for each device that reduces false positive outliers. Finally, we propose an architecture that can use this tuned behavioral model to rank each flow on the network and calculate a trust score ranking of all traffic to and from a device which allows the network to autonomously make access control decisions on a per-flow basis.
The paper introduces a method of efficient partial firmware update with several advantages compared to common methods. The amount of data to transfer for an update is reduced, the energetic efficiency is increased and as the method is designed for over the air update, the radio spectrum occupancy is decreased. Herein described approach uses Lua scripting interface to introduce updatable fragments of invokable native code. This requires a dedicated memory layout, which is herein introduced. This method allows not only to distribute patches for deployed systems, but also on demand add-ons. At the end, the security aspects of proposed firmware update system is discussed and its limitations are presented.