Biblio
Internet of Things (IoT) has an immense potential for a plethora of applications ranging from healthcare automation to defence networks and the power grid. The security of an IoT network is essentially paramount to the security of the underlying computing and communication infrastructure. However, due to constrained resources and limited computational capabilities, IoT networks are prone to various attacks. Thus, safeguarding the IoT network from adversarial attacks is of vital importance and can be realised through planning and deployment of effective security controls; one such control being an intrusion detection system. In this paper, we present a novel intrusion detection scheme for IoT networks that classifies traffic flow through the application of deep learning concepts. We adopt a newly published IoT dataset and generate generic features from the field information in packet level. We develop a feed-forward neural networks model for binary and multi-class classification including denial of service, distributed denial of service, reconnaissance and information theft attacks against IoT devices. Results obtained through the evaluation of the proposed scheme via the processed dataset illustrate a high classification accuracy.
With the rapidly increasing number of Internet of Things (IoT) devices and their extensive integration into peoples' daily lives, the security of those devices is of primary importance. Nonetheless, many IoT devices suffer from the absence, or the bad application, of security concepts, which leads to severe vulnerabilities in those devices. To achieve early detection of potential vulnerabilities, network scanner tools are frequently used. However, most of those tools are highly specialized; thus, multiple tools and a meaningful correlation of their results are required to obtain an adequate listing of identified network vulnerabilities. To simplify this process, we propose a modular framework for automated network reconnaissance and vulnerability indication in IP-based networks. It allows integrating a diverse set of tools as either, scanning tools or analysis tools. Moreover, the framework enables result aggregation of different modules and allows information sharing between modules facilitating the development of advanced analysis modules. Additionally, intermediate scanning and analysis data is stored, enabling a historical view of derived information and also allowing users to retrace decision-making processes. We show the framework's modular capabilities by implementing one scanner module and three analysis modules. The automated process is then evaluated using an exemplary scenario with common IP-based IoT components.
The growing complexity and diversification of cyber-attacks are largely reflected in the increasing sophistication of security appliances, which are often too cumbersome to be run in virtual services and IoT devices. Hence, the design of cyber-security frameworks is today looking at more cooperative models, which collect security-related data from a large set of heterogeneous sources for centralized analysis and correlation.In this paper, we outline a flexible abstraction layer for access to security context. It is conceived to program and gather data from lightweight inspection and enforcement hooks deployed in cloud applications and IoT devices. We also provide a preliminary description of its implementation, by reviewing the main software components and their role.
Opportunities arising from IoT-enabled applications are significant, but market growth is inhibited by concerns over security and complexity. To address these issues, we propose the ERAMIS methodology, which is based on instantiation of a reference architecture that captures common design features, embodies best practice, incorporates good security properties by design, and makes explicit provision for operational security services and processes.
We present a unified communication architecture for security requirements in the industrial internet of things. Formulating security requirements in the language of OPC UA provides a unified method to communicate and compare security requirements within a heavily heterogeneous landscape of machines in the field. Our machine-readable data model provides a fully automatable approach for security requirement communication within the rapidly evolving fourth industrial revolution, which is characterized by high-grade interconnection of industrial infrastructures and self-configuring production systems. Capturing security requirements in an OPC UA compliant and unified data model for industrial control systems enables strong use cases within modern production plants and future supply chains. We implement our data model as well as an OPC UA server that operates on this model to show the feasibility of our approach. Further, we deploy and evaluate our framework within a reference project realized by 14 industrial partners and 7 research facilities within Germany.
Industrial Internet of Things (IIoT) is a fusion of industrial automation systems and IoT systems. It features comprehensive sensing, interconnected transmission, intelligent processing, self-organization and self-maintenance. Its applications span intelligent transportation, smart factories, and intelligence. Many areas such as power grid and intelligent environment detection. With the widespread application of IIoT technology, the cyber security threats to industrial IoT systems are increasing day by day, and information security issues have become a major challenge in the development process. In order to protect the industrial IoT system from network attacks, this paper aims to study the industrial IoT information security protection technology, and the typical architecture of industrial Internet of things system, and analyzes the network security threats faced by industrial Internet of things system according to the different levels of the architecture, and designs the security protection strategies applied to different levels of structures based on the specific means of network attack.
The Internet of Things (IoT) and mobile systems nowadays are required to perform more intensive computation, such as facial detection, image recognition and even remote gaming, etc. Due to the limited computation performance and power budget, it is sometimes impossible to perform these workloads locally. As high-performance GPUs become more common in the cloud, offloading the computation to the cloud becomes a possible choice. However, due to the fact that offloaded workloads from different devices (belonging to different users) are being computed in the same cloud, security concerns arise. Side channel attacks on GPU systems have been widely studied, where the threat model is the attacker and the victim are running on the same operating system. Recently, major GPU vendors have provided hardware and library support to virtualize GPUs for better isolation among users. This work studies the side channel attacks from one virtual machine to another where both share the same physical GPU. We show that it is possible to infer other user's activities in this setup and can further steal others deep learning model.