Biblio
Improved safety, high mobility and environmental concerns in transportation systems across the world and the corresponding developments in information and communication technologies continue to drive attention towards Intelligent Transportation Systems (ITS). This is evident in advanced driver-assistance systems such as lane departure warning, adaptive cruise control and collision avoidance. However, in connected and autonomous vehicles, the efficient functionality of these applications depends largely on the ability of a vehicle to accurately predict it operating parameters such as location and speed. The ability to predict the immediate future/next location (or speed) of a vehicle or its ability to predict neighbors help in guaranteeing integrity, availability and accountability, thus boosting safety and resiliency of the Vehicular Network for Mobile Cyber Physical Systems (VCPS). In this paper, we proposed a secure movement-prediction for connected vehicles by using Kalman filter. Specifically, Kalman filter predicts the locations and speeds of individual vehicles with reference to already observed and known information such posted legal speed limit, geographic/road location, direction etc. The aim is to achieve resilience through the predicted and exchanged information between connected moving vehicles in an adaptive manner. By being able to predict their future locations, the following vehicle is able to adjust its position more accurately to avoid collision and to ensure optimal information exchange among vehicles.
Vehicle-logo location is a crucial step in vehicle-logo recognition system. In this paper, a novel approach of the vehicle-logo location based on edge detection and morphological filter is proposed. Firstly, the approximate location of the vehicle-logo region is determined by the prior knowledge about the position of the vehicle-logo; Secondly, the texture measure is defined to recognize the texture of the vehicle-logo background; Then, vertical edge detection is executed for the vehicle-logo background with the horizontal texture and horizontal edge detection is implemented for the vehicle-logo background with the vertical texture; Finally, position of the vehicle-logo is located accurately by mathematical morphology filter. Experimental results show the proposed method is effective.
This paper proposes a method for detecting anomalies in video data. A Variational Autoencoder (VAE) is used for reducing the dimensionality of video frames, generating latent space information that is comparable to low-dimensional sensory data (e.g., positioning, steering angle), making feasible the development of a consistent multi-modal architecture for autonomous vehicles. An Adapted Markov Jump Particle Filter defined by discrete and continuous inference levels is employed to predict the following frames and detecting anomalies in new video sequences. Our method is evaluated on different video scenarios where a semi-autonomous vehicle performs a set of tasks in a closed environment.
Vehicular communication systems increase traffic efficiency and safety by allowing vehicles to share safety-related information and location-based services. Pseudonym schemes are the standard solutions providing driver/vehicle anonymity, whilst enforcing vehicle accountability in case of liability issues. State-of-the-art PKI-based pseudonym schemes present scalability issues, notably due to the centralized architecture of certificate-based solutions. The first Direct Anonymous Attestation (DAA)-based pseudonym scheme was introduced at VNC 2017, providing a decentralized approach to the pseudonym generation and update phases. The DAA-based construction leverages the properties of trusted computing, allowing vehicles to autonomously generate their own pseudonyms by using a (resource constrained) Trusted Hardware Module or Component (TC). This proposition however requires the TC to delegate part of the (heavy) pseudonym generation computations to the (more powerful) vehicle's On-Board Unit (OBU), introducing security and privacy issues in case the OBU becomes compromised. In this paper, we introduce a novel pseudonym scheme based on a variant of DAA, namely a pre-DAA-based pseudonym scheme. All secure computations in the pre-DAA pseudonym lifecycle are executed by the secure element, thus creating a secure enclave for pseudonym generation, update, and revocation. We instantiate vehicle-to-everything (V2X) with our pre-DAA solution, thus ensuring user anonymity and user-controlled traceability within the vehicular network. In addition, the pre-DAA-based construction transfers accountability from the vehicle to the user, thus complying with the many-to-many driver/vehicle relation. We demonstrate the efficiency of our solution with a prototype implementation on a standard Javacard (acting as a TC), showing that messages can be anonymously signed and verified in less than 50 ms.
Delivery service via ridesharing is a promising service to share travel costs and improve vehicle occupancy. Existing ridesharing systems require participating vehicles to periodically report individual private information (e.g., identity and location) to a central controller, which is a potential central point of failure, resulting in possible data leakage or tampering in case of controller break down or under attack. In this paper, we propose a Blockchain secured ridesharing delivery system, where the immutability and distributed architecture of the Blockchain can effectively prevent data tampering. However, such tamper-resistance property comes at the cost of a long confirmation delay caused by the consensus process. A Hash-oriented Practical Byzantine Fault Tolerance (PBFT) based consensus algorithm is proposed to improve the Blockchain efficiency and reduce the transaction confirmation delay from 10 minutes to 15 seconds. The Hash-oriented PBFT effectively avoids the double-spending attack and Sybil attack. Security analysis and simulation results demonstrate that the proposed Blockchain secured ridesharing delivery system offers strong security guarantees and satisfies the quality of delivery service in terms of confirmation delay and transaction throughput.
In Vehicle-to-Vehicle (V2V) communications, malicious actors may spread false information to undermine the safety and efficiency of the vehicular traffic stream. Thus, vehicles must determine how to respond to the contents of messages which maybe false even though they are authenticated in the sense that receivers can verify contents were not tampered with and originated from a verifiable transmitter. Existing solutions to find appropriate actions are inadequate since they separately address trust and decision, require the honest majority (more honest ones than malicious), and do not incorporate driver preferences in the decision-making process. In this work, we propose a novel trust-aware decision-making framework without requiring an honest majority. It securely determines the likelihood of reported road events despite the presence of false data, and consequently provides the optimal decision for the vehicles. The basic idea of our framework is to leverage the implied effect of the road event to verify the consistency between each vehicle's reported data and actual behavior, and determine the data trustworthiness and event belief by integrating the Bayes' rule and Dempster Shafer Theory. The resulting belief serves as inputs to a utility maximization framework focusing on both safety and efficiency. This framework considers the two basic necessities of the Intelligent Transportation System and also incorporates drivers' preferences to decide the optimal action. Simulation results show the robustness of our framework under the multiple-vehicle attack, and different balances between safety and efficiency can be achieved via selecting appropriate human preference factors based on the driver's risk-taking willingness.
As the traffic congestion increases on the transport network, Payable on the road to slower speeds, longer falter times, as a consequence bigger vehicular queuing, it's necessary to introduce smart way to reduce traffic. We are already edging closer to ``smart city-smart travel''. Today, a large number of smart phone applications and connected sat-naves will help get you to your destination in the quickest and easiest manner possible due to real-time data and communication from a host of sources. In present situation, traffic lights are used in each phase. The other way is to use electronic sensors and magnetic coils that detect the congestion frequency and monitor traffic, but found to be more expensive. Hence we propose a traffic control system using image processing techniques like edge detection. The vehicles will be detected using images instead of sensors. The cameras are installed alongside of the road and it will capture image sequence for every 40 seconds. The digital image processing techniques will be applied to analyse and process the image and according to that the traffic signal lights will be controlled.
Aiming at the phenomenon that the urban traffic is complex at present, the optimization algorithm of the traditional logistic distribution path isn't sensitive to the change of road condition without strong application in the actual logistics distribution, the optimization algorithm research of logistics distribution path based on the deep belief network is raised. Firstly, build the traffic forecast model based on the deep belief network, complete the model training and conduct the verification by learning lots of traffic data. On such basis, combine the predicated road condition with the traffic network to build the time-share traffic network, amend the access set and the pheromone variable of ant algorithm in accordance with the time-share traffic network, and raise the optimization algorithm of logistics distribution path based on the traffic forecasting. Finally, verify the superiority and application value of the algorithm in the actual distribution through the optimization algorithm contrast test with other logistics distribution paths.
Nowadays, Vehicular ad hoc network confronts many challenges in terms of security and privacy, due to the fact that data transmitted are diffused in an open access environment. However, highest of drivers want to maintain their information discreet and protected, and they do not want to share their confidential information. So, the private information of drivers who are distributed in this network must be protected against various threats that may damage their privacy. That is why, confidentiality, integrity and availability are the important security requirements in VANET. This paper focus on security threat in vehicle network especially on the availability of this network. Then we regard the rational attacker who decides to lead an attack based on its adversary's strategy to maximize its own attack interests. Our aim is to provide reliability and privacy of VANET system, by preventing attackers from violating and endangering the network. to ensure this objective, we adopt a tree structure called attack tree to model the attacker's potential attack strategies. Also, we join the countermeasures to the attack tree in order to build attack-defense tree for defending these attacks.
Identity masking methods have been developed in recent years for use in multiple applications aimed at protecting privacy. There is only limited work, however, targeted at evaluating effectiveness of methods-with only a handful of studies testing identity masking effectiveness for human perceivers. Here, we employed human participants to evaluate identity masking algorithms on video data of drivers, which contains subtle movements of the face and head. We evaluated the effectiveness of the “personalized supervised bilinear regression method for Facial Action Transfer (FAT)” de-identification algorithm. We also evaluated an edge-detection filter, as an alternate “fill-in” method when face tracking failed due to abrupt or fast head motions. Our primary goal was to develop methods for humanbased evaluation of the effectiveness of identity masking. To this end, we designed and conducted two experiments to address the effectiveness of masking in preventing recognition and in preserving action perception. 1- How effective is an identity masking algorithm?We conducted a face recognition experiment and employed Signal Detection Theory (SDT) to measure human accuracy and decision bias. The accuracy results show that both masks (FAT mask and edgedetection) are effective, but that neither completely eliminated recognition. However, the decision bias data suggest that both masks altered the participants' response strategy and made them less likely to affirm identity. 2- How effectively does the algorithm preserve actions? We conducted two experiments on facial behavior annotation. Results showed that masking had a negative effect on annotation accuracy for the majority of actions, with differences across action types. Notably, the FAT mask preserved actions better than the edge-detection mask. To our knowledge, this is the first study to evaluate a deidentification method aimed at preserving facial ac- ions employing human evaluators in a laboratory setting.
This paper address the problem of shadow detection and removal in traffic vision analysis. Basically, the presence of the shadow in the traffic sequences is imminent, and therefore leads to errors at segmentation stage and often misclassified as an object region or as a moving object. This paper presents a shadow removal method, based on both color and texture features, aiming to contribute to retrieve efficiently the moving objects whose detection are usually under the influence of cast-shadows. Additionally, in order to get a shadow-free foreground segmentation image, a morphology reconstruction algorithm is used to recover the foreground disturbed by shadow removal. Once shadows are detected, an automatic shadow removal model is proposed based on the information retrieved from the histogram shape. Experimental results on a real traffic sequence is presented to test the proposed approach and to validate the algorithm's performance.
Keeping a driver focused on the road is one of the most critical steps in insuring the safe operation of a vehicle. The Strategic Highway Research Program 2 (SHRP2) has over 3,100 recorded videos of volunteer drivers during a period of 2 years. This extensive naturalistic driving study (NDS) contains over one million hours of video and associated data that could aid safety researchers in understanding where the driver's attention is focused. Manual analysis of this data is infeasible; therefore efforts are underway to develop automated feature extraction algorithms to process and characterize the data. The real-world nature, volume, and acquisition conditions are unmatched in the transportation community, but there are also challenges because the data has relatively low resolution, high compression rates, and differing illumination conditions. A smaller dataset, the head pose validation study, is available which used the same recording equipment as SHRP2 but is more easily accessible with less privacy constraints. In this work we report initial head pose accuracy using commercial and open source face pose estimation algorithms on the head pose validation data set.
In this paper we present a framework for Quality of Information (QoI)-aware networking. QoI quantifies how useful a piece of information is for a given query or application. Herein, we present a general QoI model, as well as a specific example instantiation that carries throughout the rest of the paper. In this model, we focus on the tradeoffs between precision and accuracy. As a motivating example, we look at traffic video analysis. We present simple algorithms for deriving various traffic metrics from video, such as vehicle count and average speed. We implement these algorithms both on a desktop workstation and less-capable mobile device. We then show how QoI-awareness enables end devices to make intelligent decisions about how to process queries and form responses, such that huge bandwidth savings are realized.
Public Key Regime (PKR) was proposed as an alternative to certificate based PKI in securing Vehicular Networks (VNs). It eliminates the need for vehicles to append their certificate for verification because the Road Side Units (RSUs) serve as Delegated Trusted Authorities (DTAs) to issue up-to-date public keys to vehicles for communications. If a vehicle's private/public key needs to be revoked, the root TA performs real time updates and disseminates the changes to these RSUs in the network. Therefore, PKR does not need to maintain a huge Certificate Revocation List (CRL), avoids complex certificate verification process and minimizes the high latency. However, the PKR scheme is vulnerable to Denial of Service (DoS) and collusion attacks. In this paper, we study these attacks and propose a pre-authentication mechanism to secure the PKR scheme. Our new scheme is called the Secure Public Key Regime (SPKR). It is based on the Schnorr signature scheme that requires vehicles to expend some amount of CPU resources before RSUs issue the requested public keys to them. This helps to alleviate the risk of DoS attacks. Furthermore, our scheme is secure against collusion attacks. Through numerical analysis, we show that SPKR has a lower authentication delay compared with the Elliptic Curve Digital Signature (ECDSA) scheme and other ECDSA based counterparts.
Applications such as fleet management and logistics, emergency response, public security and surveillance or mobile workforce management use geo-positioning and mobile networks as means of enabling real-time monitoring, communication and collaboration among a possibly large set of mobile nodes. The majority of those systems require real-time tracking of mobile nodes (e.g. vehicles, people or mobile robots), reliable communication to/from the nodes, as well as group communication among the mobile nodes. In this paper we describe a distributed middleware with focus on management of context-defined groups of mobile nodes, and group communication with large sets of nodes. We also present a prototype Fleet Tracking and Management system based on our middleware, give an example of how context-specific group communication can enhance the node's mutual awareness, and show initial performance results that indicate small overhead and latency of the group communication and management.
Misalignment angles estimation of strapdown inertial navigation system (INS) using global positioning system (GPS) data is highly affected by measurement noises, especially with noises displaying time varying statistical properties. Hence, adaptive filtering approach is recommended for the purpose of improving the accuracy of in-motion alignment. In this paper, a simplified form of Celso's adaptive stochastic filtering is derived and applied to estimate both the INS error states and measurement noise statistics. To detect and bound the influence of outliers in INS/GPS integration, outlier detection based on jerk tracking model is also proposed. The accuracy and validity of the proposed algorithm is tested through ground based navigation experiments.
Vehicular ad-hoc networks (VANETs) provides infrastructure less, rapidly deployable, self-configurable network connectivity. The network is the collection vehicles interlinked by wireless links and willing to store and forward data for their peers. As vehicles move freely and organize themselves arbitrarily, message routing is done dynamically based on network connectivity. Compared with other ad-hoc networks, VANETs are particularly challenging due to the part of the vehicles' high rate of mobility and the numerous signal-weakening barrier, such as buildings, in their environments. Due to their enormous potential, VANET have gained an increasing attention in both industry and academia. Research activities range from lower layer protocol design to applications and implementation issues. A secure VANET system, while exchanging information should protect the system against unauthorized message injection, message alteration, eavesdropping. The security of VANET is one of the most critical issues because their information transmission is propagated in open access (wireless) environments. A few years back VANET has received increased attention as the potential technology to enhance active and preventive safety on the road, as well as travel comfort Safekeeping and privacy are mandatory in vehicular communications for a grateful acceptance and use of such technology. This paper is an attempt to highlight the problems occurred in Vehicular Ad hoc Networks and security issues.