Visible to the public Biblio

Filters: Keyword is malicious attacks  [Clear All Filters]
2023-09-08
Li, Leixiao, Xiong, Xiao, Gao, Haoyu, Zheng, Yue, Niu, Tieming, Du, Jinze.  2022.  Blockchain-based trust evaluation mechanism for Internet of Vehicles. 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta). :2011–2018.
In the traditional Internet of Vehicles, communication data is easily tampered with and easily leaked. In order to improve the trust evaluation mechanism of the Internet of Vehicles and establish a trust relationship between vehicles, a blockchain-based Internet of Vehicles trust evaluation (BBTE) scheme is proposed. First, the scheme uses the roadside unit RSU to calculate the trust value of vehicle nodes and maintain the generation, verification and storage of blocks, so as to realize distributed data storage and ensure that data cannot be tampered with. Secondly, an efficient trust evaluation method is designed. The method integrates four trust decision factors: initial trust, historical experience trust, recommendation trust and RSU observation trust to obtain the overall trust value of vehicle nodes. In addition, in the process of constructing the recommendation trust method, the recommendation trust is divided into three categories according to the interaction between the recommended vehicle node and the communicator, use CRITIC to obtain the optimal weights of three recommended trusts, and use CRITIC to obtain the optimal weights of four trust decision-making factors to obtain the final trust value. Finally, the NS3 simulation platform is used to verify the security and accuracy of the trust evaluation method, and to improve the identification accuracy and detection rate of malicious vehicle nodes. The experimental analysis shows that the scheme can effectively deal with the gray hole attack, slander attack and collusion attack of other vehicle nodes, improve the security of vehicle node communication interaction, and provide technical support for the basic application of Internet of Vehicles security.
2023-03-17
Eun, Yongsoon, Park, Jaegeun, Jeong, Yechan, Kim, Daehoon, Park, Kyung-Joon.  2022.  A Resiliency Coordinator Against Malicious Attacks for Cyber-Physical Systems. 2022 22nd International Conference on Control, Automation and Systems (ICCAS). :1698–1703.
Resiliency of cyber-physical systems (CPSs) against malicious attacks has been a topic of active research in the past decade due to widely recognized importance. Resilient CPS is capable of tolerating some attacks, operating at a reduced capacity with core functions maintained, and failing gracefully to avoid any catastrophic consequences. Existing work includes an architecture for hierarchical control systems, which is a subset of CPS with wide applicability, that is tailored for resiliency. Namely, the architecture consists of local, network and supervision layers and features such as simplex structure, resource isolation by hypervisors, redundant sensors/actuators, and software defined network capabilities. Existing work also includes methods of ensuring a level of resiliency at each one of the layers, respectively. However, for a holistic system level resiliency, individual methods at each layers must be coordinated in their deployment because all three layers interact for the operation of CPS. For this purpose, a resiliency coordinator for CPS is proposed in this work. The resiliency coordinator is the interconnection of central resiliency coordinator in the supervision layer, network resiliency coordinator in the network layer, and finally, local resiliency coordinators in multiple physical systems that compose the physical layer. We show, by examples, the operation of the resiliency coordinator and illustrate that RC accomplishes a level of attack resiliency greater than the sum of resiliency at each one of the layers separately.
ISSN: 2642-3901
2023-02-17
Mohan, K Venkata Murali, Kodati, Sarangam, Krishna, V..  2022.  Securing SDN Enabled IoT Scenario Infrastructure of Fog Networks From Attacks. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :1239–1243.
Nowadays, lives are very much easier with the help of IoT. Due to lack of protection and a greater number of connections, the management of IoT becomes more difficult To manage the network flow, a Software Defined Networking (SDN) has been introduced. The SDN has a great capability in automatic and dynamic distribution. For harmful attacks on the controller a centralized SDN architecture unlocks the scope. Therefore, to reduce these attacks in real-time, a securing SDN enabled IoT scenario infrastructure of Fog networks is preferred. The virtual switches have network enforcement authorized decisions and these are executed through the SDN network. Apart from this, SDN switches are generally powerful machines and simultaneously these are used as fog nodes. Therefore, SDN looks like a good selection for Fog networks of IoT. Moreover, dynamically distributing the necessary crypto keys are allowed by the centralized and software channel protection management solution, in order to establish the Datagram Transport Layer Security (DTIS) tunnels between the IoT devices, when demanded by the cyber security framework. Through the extensive deployment of this combination, the usage of CPU is observed to be 30% between devices and the latencies are in milliseconds range, and thus it presents the system feasibility with less delay. Therefore, by comparing with the traditional SDN, it is observed that the energy consumption is reduced by more than 90%.
2021-09-30
Al Guqhaiman, Ahmed, Akanbi, Oluwatobi, Aljaedi, Amer, Chow, C. Edward.  2020.  Lightweight Multi-Factor Authentication for Underwater Wireless Sensor Networks. 2020 International Conference on Computational Science and Computational Intelligence (CSCI). :188–194.
Underwater Wireless Sensor Networks (UWSNs) are liable to malicious attacks due to limited bandwidth, limited power, high propagation delay, path loss, and variable speed. The major differences between UWSNs and Terrestrial Wireless Sensor Networks (TWSNs) necessitate a new mechanism to secure UWSNs. The existing Media Access Control (MAC) and routing protocols have addressed the network performance of UWSNs, but are vulnerable to several attacks. The secure MAC and routing protocols must exist to detect Sybil, Blackhole, Wormhole, Hello Flooding, Acknowledgment Spoofing, Selective Forwarding, Sinkhole, and Exhaustion attacks. These attacks can disrupt or disable the network connection. Hence, these attacks can degrade the network performance and total loss can be catastrophic in some applications, like monitoring oil/gas spills. Several researchers have studied the security of UWSNs, but most of the works detect malicious attacks solely based on a certain predefined threshold. It is not optimal to detect malicious attacks after the threshold value is met. In this paper, we propose a multi-factor authentication model that is based on zero-knowledge proof to detect malicious activities and secure UWSNs from several attacks.
2021-02-16
Kriaa, S., Papillon, S., Jagadeesan, L., Mendiratta, V..  2020.  Better Safe than Sorry: Modeling Reliability and Security in Replicated SDN Controllers. 2020 16th International Conference on the Design of Reliable Communication Networks DRCN 2020. :1—6.
Software-defined networks (SDN), through their programmability, significantly increase network resilience by enabling dynamic reconfiguration of network topologies in response to faults and potentially malicious attacks detected in real-time. Another key trend in network softwarization is cloud-native software, which, together with SDN, will be an integral part of the core of future 5G networks. In SDN, the control plane forms the "brain" of the software-defined network and is typically implemented as a set of distributed controller replicas to avoid a single point of failure. Distributed consensus algorithms are used to ensure agreement among the replicas on key data even in the presence of faults. Security is also a critical concern in ensuring that attackers cannot compromise the SDN control plane; byzantine fault tolerance algorithms can provide protection against compromised controller replicas. However, while reliability/availability and security form key attributes of resilience, they are typically modeled separately in SDN, without consideration of the potential impacts of their interaction. In this paper we present an initial framework for a model that unifies reliability, availability, and security considerations in distributed consensus. We examine – via simulation of our model – some impacts of the interaction between accidental faults and malicious attacks on SDN and suggest potential mitigations unique to cloud-native software.
2020-12-17
Lu, W., Shu, S., Shi, H., Li, R., Dong, W..  2020.  Synthesizing Secure Reactive Controller for Unmanned Aerial System. 2019 6th International Conference on Dependable Systems and Their Applications (DSA). :419—424.

Complex CPS such as UAS got rapid development these years, but also became vulnerable to GPS spoofing, packets injection, buffer-overflow and other malicious attacks. Ensuring the behaviors of UAS always keeping secure no matter how the environment changes, would be a prospective direction for UAS security. This paper aims at presenting a reactive synthesis-based approach to implement the automatic generation of secure UAS controller. First, we study the operating mechanism of UAS and construct a high-Ievel model consisting of actuator and monitor. Besides, we analyze the security threats of UAS from the perspective of hardware, software and data transmission, and then extract the corresponding specifications of security properties with LTL formulas. Based on the UAS model and security specifications, the controller can be constructed by GR(1) synthesis algorithm, which is a two-player game process between UAV and Environment. Finally, we expand the function of LTLMoP platform to construct the automatons for controller in multi-robots system, which provides secure behavior strategies under several typical UAS attack scenarios.

2020-12-14
Pilet, A. B., Frey, D., Taïani, F..  2020.  Foiling Sybils with HAPS in Permissionless Systems: An Address-based Peer Sampling Service. 2020 IEEE Symposium on Computers and Communications (ISCC). :1–6.
Blockchains and distributed ledgers have brought renewed interest in Byzantine fault-tolerant protocols and decentralized systems, two domains studied for several decades. Recent promising works have in particular proposed to use epidemic protocols to overcome the limitations of popular Blockchain mechanisms, such as proof-of-stake or proof-of-work. These works unfortunately assume a perfect peer-sampling service, immune to malicious attacks, a property that is difficult and costly to achieve. We revisit this fundamental problem in this paper, and propose a novel Byzantine-tolerant peer-sampling service that is resilient to Sybil attacks in open systems by exploiting the underlying structure of wide-area networks.
2020-11-02
Vaseer, G., Ghai, G., Ghai, D., Patheja, P. S..  2019.  A Neighbor Trust-Based Mechanism to Protect Mobile Networks. IEEE Potentials. 38:20–25.
Mobile nodes in a mobile ad hoc network (MANET) form a temporal link between a sender and receiver due to their continuous movement in a limited area. This network can be easily attacked because there is no organized identity. This article discusses the MANET, its various associated challenges, and selected solutions. As a case study, a neighbor trust-based security scheme that can prevent malicious attacks in a MANET is discussed in detail. The security scheme identifies each node's behavior in the network in terms of packets received and forwarded. Nodes are placed in a suspicious range, and if the security scheme detects malicious function continuously, then it is confirmed that the particular node is the attacker in the network.
2020-10-30
Pearce, Hammond, Pinisetty, Srinivas, Roop, Partha S., Kuo, Matthew M. Y., Ukil, Abhisek.  2020.  Smart I/O Modules for Mitigating Cyber-Physical Attacks on Industrial Control Systems. IEEE Transactions on Industrial Informatics. 16:4659—4669.

Cyber-physical systems (CPSs) are implemented in many industrial and embedded control applications. Where these systems are safety-critical, correct and safe behavior is of paramount importance. Malicious attacks on such CPSs can have far-reaching repercussions. For instance, if elements of a power grid behave erratically, physical damage and loss of life could occur. Currently, there is a trend toward increased complexity and connectivity of CPS. However, as this occurs, the potential attack vectors for these systems grow in number, increasing the risk that a given controller might become compromised. In this article, we examine how the dangers of compromised controllers can be mitigated. We propose a novel application of runtime enforcement that can secure the safety of real-world physical systems. Here, we synthesize enforcers to a new hardware architecture within programmable logic controller I/O modules to act as an effective line of defence between the cyber and the physical domains. Our enforcers prevent the physical damage that a compromised control system might be able to perform. To demonstrate the efficacy of our approach, we present several benchmarks, and show that the overhead for each system is extremely minimal.

2020-10-29
Wang, Shi-wen, Xia, Hui.  2018.  A Reputation Management Framework for MANETs. 2018 IEEE Symposium on Privacy-Aware Computing (PAC). :119—120.
Resistance to malicious attacks and assessment of the trust value of nodes are important aspects of trusted mobile ad hoc networks (MANETs), and it is therefore necessary to establish an effective reputation management system. Previous studies have relied on the direct monitoring of nodes, recommendations from neighbors or a combination of these two methods to calculate a reputation value. However, these models can neither collect trust information effectively, nor cooperate to resist an attack, instead increasing the network load. To solve these problems, this paper proposes a novel reputation management framework that collects trust information and calculates the reputation value of nodes by selecting special nodes as management nodes. This framework can effectively identify malicious information and improve the credibility of a reputation value.
2020-09-21
Takahashi, Hironao, Lakhani, Uzair.  2019.  Multiple Layered Security Analyses Method for Cryptocurrency Exchange Servicers. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :71–73.
Internet is a common method of trading business today. The usage of cryptocurrencies has increased these days and it has become a trend to utilize them. Cryptocurrency exchange servicers provide different smartphone apps that unfortunately may become the target of malicious attacks. This paper focuses on how it achieves highest security and proposes the multiple layered security analyses method for cryptocurrency exchange servicers.
2020-08-24
Dong, Kexiong, Luo, Weiwei, Pan, Xiaohua, Yin, Jianwei.  2019.  An Internet Medical Care-Oriented Service Security Open Platform. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :489–492.
As an inevitable trend of information development of hospitals, Internet hospitals provide a series of convenient online services for patients such as registration, consultation, queuing, payment and medicine pick-up. However, hospitals have to face huge challenges, and deploy an Internet medical care-oriented service security open platform to ensure the security of personal privacy data and avoid malicious attacks from the Internet, so as to prevent illegal stealing of medical data. The service security open platform provides visualized control for the unified and standardized connection process and data access process.
2020-07-27
Liem, Clifford, Murdock, Dan, Williams, Andrew, Soukup, Martin.  2019.  Highly Available, Self-Defending, and Malicious Fault-Tolerant Systems for Automotive Cybersecurity. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :24–27.
With the growing number of electronic features in cars and their connections to the cloud, smartphones, road-side equipment, and neighboring cars the need for effective cybersecurity is paramount. Beyond the concern of brand degradation, warranty fraud, and recalls, what keeps manufacturers up at night is the threat of malicious attacks which can affect the safety of vehicles on the road. Would any single protection technique provide the security needed over the long lifetime of a vehicle? We present a new methodology for automotive cybersecurity where the designs are made to withstand attacks in the future based on the concepts of high availability and malicious fault-tolerance through self-defending techniques. When a system has an intrusion, self-defending technologies work to contain the breach using integrity verification, self-healing, and fail-over techniques to keep the system running.
2020-07-24
Jiang, Feng, Qi, Buren, Wu, Tianhao, Zhu, Konglin, Zhang, Lin.  2019.  CPSS: CP-ABE based Platoon Secure Sensing Scheme against Cyber-Attacks. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). :3218—3223.

Platoon is one of cooperative driving applications where a set of vehicles can collaboratively sense each other for driving safety and traffic efficiency. However, platoon without security insurance makes the cooperative vehicles vulnerable to cyber-attacks, which may cause life-threatening accidents. In this paper, we introduce malicious attacks in platoon maneuvers. To defend against these attacks, we propose a Cyphertext-Policy Attribute-Based Encryption (CP-ABE) based Platoon Secure Sensing scheme, named CPSS. In the CPSS, platoon key is encapsulated in the access control structure in the key distribution process, so that interference messages sending by attackers without the platoon key could be ignored. Therefore, the sensing data which contains speed and position information can be protected. In this way, speed and distance fluctuations caused by attacks can be mitigated even eliminated thereby avoiding the collisions and ensuring the overall platoon stability. Time complexity analysis shows that the CPSS is more efficient than that of the polynomial time solutions. Finally, to evaluate capabilities of the CPSS, we integrate a LTE-V2X with platoon maneuvers based on Veins platform. The evaluation results show that the CPSS outperforms the baseline algorithm by 25% in terms of distance variations.

2020-06-19
Chen, Yanping, Ma, Long, Xia, Hong, Gao, Cong, Wang, Zhongmin, Yu, Zhong.  2019.  Trust-Based Distributed Kalman Filter Estimation Fusion under Malicious Cyber Attacks. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :2255—2260.

We consider distributed Kalman filter for dynamic state estimation over wireless sensor networks. It is promising but challenging when network is under cyber attacks. Since the information exchange between nodes, the malicious attacks quickly spread across the entire network, which causing large measurement errors and even to the collapse of sensor networks. Aiming at the malicious network attack, a trust-based distributed processing frame is proposed. Which allows neighbor nodes to exchange information, and a series of trusted nodes are found using truth discovery. As a demonstration, distributed Cooperative Localization is considered, and numerical results are provided to evaluate the performance of the proposed approach by considering random, false data injection and replay attacks.

2020-06-01
Alshinina, Remah, Elleithy, Khaled.  2018.  A highly accurate machine learning approach for developing wireless sensor network middleware. 2018 Wireless Telecommunications Symposium (WTS). :1–7.
Despite the popularity of wireless sensor networks (WSNs) in a wide range of applications, security problems associated with them have not been completely resolved. Middleware is generally introduced as an intermediate layer between WSNs and the end user to resolve some limitations, but most of the existing middleware is unable to protect data from malicious and unknown attacks during transmission. This paper introduces an intelligent middleware based on an unsupervised learning technique called Generative Adversarial Networks (GANs) algorithm. GANs contain two networks: a generator (G) network and a detector (D) network. The G creates fake data similar to the real samples and combines it with real data from the sensors to confuse the attacker. The D contains multi-layers that have the ability to differentiate between real and fake data. The output intended for this algorithm shows an actual interpretation of the data that is securely communicated through the WSN. The framework is implemented in Python with experiments performed using Keras. Results illustrate that the suggested algorithm not only improves the accuracy of the data but also enhances its security by protecting data from adversaries. Data transmission from the WSN to the end user then becomes much more secure and accurate compared to conventional techniques.
2020-04-17
Jang, Yunseok, Zhao, Tianchen, Hong, Seunghoon, Lee, Honglak.  2019.  Adversarial Defense via Learning to Generate Diverse Attacks. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). :2740—2749.

With the remarkable success of deep learning, Deep Neural Networks (DNNs) have been applied as dominant tools to various machine learning domains. Despite this success, however, it has been found that DNNs are surprisingly vulnerable to malicious attacks; adding a small, perceptually indistinguishable perturbations to the data can easily degrade classification performance. Adversarial training is an effective defense strategy to train a robust classifier. In this work, we propose to utilize the generator to learn how to create adversarial examples. Unlike the existing approaches that create a one-shot perturbation by a deterministic generator, we propose a recursive and stochastic generator that produces much stronger and diverse perturbations that comprehensively reveal the vulnerability of the target classifier. Our experiment results on MNIST and CIFAR-10 datasets show that the classifier adversarially trained with our method yields more robust performance over various white-box and black-box attacks.

2020-02-17
Jyothi, R., Cholli, Nagaraj G..  2019.  New Approach to Secure Cluster Heads in Wireless Sensor Networks. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :1097–1101.
This Wireless Sensor Network is a network of devices that communicates the information gathered from a monitored field through wireless links. Small size sensor nodes constitute wireless sensor networks. A Sensor is a device that responds and detects some type of input from both the physical or environmental conditions, such as pressure, heat, light, etc. Applications of wireless sensor networks include home automation, street lighting, military, healthcare and industrial process monitoring. As wireless sensor networks are distributed across large geographical area, these are vulnerable to various security threats. This affects the performance of the wireless sensor networks. The impact of security issues will become more critical if the network is used for mission-critical applications like tactical battlefield. In real life deployment scenarios, the probability of failure of nodes is more. As a result of resource constraints in the sensor nodes, traditional methods which involve large overhead computation and communication are not feasible in WSNs. Hence, design and deployment of secured WSNs is a challenging task. Attacks on WSNs include attack on confidentiality, integrity and availability. There are various types of architectures that are used to deploy WSNs. Some of them are data centric, hierarchical, location based, mobility based etc. This work discusses the security issue of hierarchical architecture and proposes a solution. In hierarchical architectures, sensor nodes are grouped to form clusters. Intra-cluster communication happens through cluster heads. Cluster heads also facilitate inter-cluster communication with other cluster heads. Aggregation of data generated by sensor nodes is done by cluster heads. Aggregated data also get transferred to base through multi-hop approach in most cases. Cluster heads are vulnerable to various malicious attacks and this greatly affects the performance of the wireless sensor network. The proposed solution identifies attacked cluster head and changes the CH by identifying the fittest node using genetic algorithm based search.
2020-01-28
Xuan, Shichang, Wang, Huanhong, Gao, Duo, Chung, Ilyong, Wang, Wei, Yang, Wu.  2019.  Network Penetration Identification Method Based on Interactive Behavior Analysis. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). :210–215.

The Internet has gradually penetrated into the national economy, politics, culture, military, education and other fields. Due to its openness, interconnectivity and other characteristics, the Internet is vulnerable to all kinds of malicious attacks. The research uses a honeynet to collect attacker information, and proposes a network penetration recognition technology based on interactive behavior analysis. Using Sebek technology to capture the attacker's keystroke record, time series modeling of the keystroke sequences of the interaction behavior is proposed, using a Recurrent Neural Network. The attack recognition method is constructed by using Long Short-Term Memory that solves the problem of gradient disappearance, gradient explosion and long-term memory shortage in ordinary Recurrent Neural Network. Finally, the experiment verifies that the short-short time memory network has a high accuracy rate for the recognition of penetration attacks.

2019-10-28
Huang, Jingwei.  2018.  From Big Data to Knowledge: Issues of Provenance, Trust, and Scientific Computing Integrity. 2018 IEEE International Conference on Big Data (Big Data). :2197–2205.
This paper addresses the nature of data and knowledge, the relation between them, the variety of views as a characteristic of Big Data regarding that data may come from many different sources/views from different viewpoints, and the associated essential issues of data provenance, knowledge provenance, scientific computing integrity, and trust in the data science process. Towards the direction of data-intensive science and engineering, it is of paramount importance to ensure Scientific Computing Integrity (SCI). A failure of SCI may be caused by malicious attacks, natural environmental changes, faults of scientists, operations mistakes, faults of supporting systems, faults of processes, and errors in the data or theories on which a research relies. The complexity of scientific workflows and large provenance graphs as well as various causes for SCI failures make ensuring SCI extremely difficult. Provenance and trust play critical role in evaluating SCI. This paper reports our progress in building a model for provenance-based trust reasoning about SCI.
2019-05-09
Lu, G., Feng, D..  2018.  Network Security Situation Awareness for Industrial Control System Under Integrity Attacks. 2018 21st International Conference on Information Fusion (FUSION). :1808-1815.

Due to the wide implementation of communication networks, industrial control systems are vulnerable to malicious attacks, which could cause potentially devastating results. Adversaries launch integrity attacks by injecting false data into systems to create fake events or cover up the plan of damaging the systems. In addition, the complexity and nonlinearity of control systems make it more difficult to detect attacks and defense it. Therefore, a novel security situation awareness framework based on particle filtering, which has good ability in estimating state for nonlinear systems, is proposed to provide an accuracy understanding of system situation. First, a system state estimation based on particle filtering is presented to estimate nodes state. Then, a voting scheme is introduced into hazard situation detection to identify the malicious nodes and a local estimator is constructed to estimate the actual system state by removing the identified malicious nodes. Finally, based on the estimated actual state, the actual measurements of the compromised nodes are predicted by using the situation prediction algorithm. At the end of this paper, a simulation of a continuous stirred tank is conducted to verify the efficiency of the proposed framework and algorithms.

2019-05-01
Ren, W., Yardley, T., Nahrstedt, K..  2018.  EDMAND: Edge-Based Multi-Level Anomaly Detection for SCADA Networks. 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1-7.

Supervisory Control and Data Acquisition (SCADA) systems play a critical role in the operation of large-scale distributed industrial systems. There are many vulnerabilities in SCADA systems and inadvertent events or malicious attacks from outside as well as inside could lead to catastrophic consequences. Network-based intrusion detection is a preferred approach to provide security analysis for SCADA systems due to its less intrusive nature. Data in SCADA network traffic can be generally divided into transport, operation, and content levels. Most existing solutions only focus on monitoring and event detection of one or two levels of data, which is not enough to detect and reason about attacks in all three levels. In this paper, we develop a novel edge-based multi-level anomaly detection framework for SCADA networks named EDMAND. EDMAND monitors all three levels of network traffic data and applies appropriate anomaly detection methods based on the distinct characteristics of data. Alerts are generated, aggregated, prioritized before sent back to control centers. A prototype of the framework is built to evaluate the detection ability and time overhead of it.

2019-01-21
Nicolaou, N., Eliades, D. G., Panayiotou, C., Polycarpou, M. M..  2018.  Reducing Vulnerability to Cyber-Physical Attacks in Water Distribution Networks. 2018 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater). :16–19.

Cyber-Physical Systems (CPS), such as Water Distribution Networks (WDNs), deploy digital devices to monitor and control the behavior of physical processes. These digital devices, however, are susceptible to cyber and physical attacks, that may alter their functionality, and therefore the integrity of their measurements/actions. In practice, industrial control systems utilize simple control laws, which rely on various sensor measurements and algorithms which are expected to operate normally. To reduce the impact of a potential failure, operators may deploy redundant components; this however may not be useful, e.g., when a cyber attack at a PLC component occurs. In this work, we address the problem of reducing vulnerability to cyber-physical attacks in water distribution networks. This is achieved by augmenting the graph which describes the information flow from sensors to actuators, by adding new connections and algorithms, to increase the number of redundant cyber components. These, in turn, increase the \textitcyber-physical security level, which is defined in the present paper as the number of malicious attacks a CPS may sustain before becoming unable to satisfy the control requirements. A proof-of-concept of the approach is demonstrated over a simple WDN, with intuition on how this can be used to increase the cyber-physical security level of the system.

Zhao, J., Kong, K., Hei, X., Tu, Y., Du, X..  2018.  A Visible Light Channel Based Access Control Scheme for Wireless Insulin Pump Systems. 2018 IEEE International Conference on Communications (ICC). :1–6.
Smart personal insulin pumps have been widely adopted by type 1 diabetes. However, many wireless insulin pump systems lack security mechanisms to protect them from malicious attacks. In previous works, the read-write attacks over RF channels can be launched stealthily and could jeopardize patients' lives. Protecting patients from such attacks is urgent. To address this issue, we propose a novel visible light channel based access control scheme for wireless infusion insulin pumps. This scheme employs an infrared photodiode sensor as a receiver in an insulin pump, and an infrared LED as an emitter in a doctor's reader (USB) to transmit a PIN/shared key to authenticate the doctor's USB. The evaluation results demonstrate that our scheme can reliably pass the authentication process with a low false accept rate (0.05% at a distance of 5cm).
2018-08-23
Cheah, M., Bryans, J., Fowler, D. S., Shaikh, S. A..  2017.  Threat Intelligence for Bluetooth-Enabled Systems with Automotive Applications: An Empirical Study. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :36–43.

Modern vehicles are opening up, with wireless interfaces such as Bluetooth integrated in order to enable comfort and safety features. Furthermore a plethora of aftermarket devices introduce additional connectivity which contributes to the driving experience. This connectivity opens the vehicle to potentially malicious attacks, which could have negative consequences with regards to safety. In this paper, we survey vehicles with Bluetooth connectivity from a threat intelligence perspective to gain insight into conditions during real world driving. We do this in two ways: firstly, by examining Bluetooth implementation in vehicles and gathering information from inside the cabin, and secondly, using war-nibbling (general monitoring and scanning for nearby devices). We find that as the vehicle age decreases, the security (relatively speaking) of the Bluetooth implementation increases, but that there is still some technological lag with regards to Bluetooth implementation in vehicles. We also find that a large proportion of vehicles and aftermarket devices still use legacy pairing (and are therefore more insecure), and that these vehicles remain visible for sufficient time to mount an attack (assuming some premeditation and preparation). We demonstrate a real-world threat scenario as an example of the latter. Finally, we provide some recommendations on how the security risks we discover could be mitigated.