Biblio
Cloud-based payments, virtual car keys, and digital rights management are examples of consumer electronics applications that use secure software. White-box implementations of the Advanced Encryption Standard (AES) are important building blocks of secure software systems, and the attack of Billet, Gilbert, and Ech-Chatbi (BGE) is a well-known attack on such implementations. A drawback from the adversary’s or security tester’s perspective is that manual reverse engineering of the implementation is required before the BGE attack can be applied. This paper presents a method to automate the BGE attack on a class of white-box AES implementations with a specific type of external encoding. The new method was implemented and applied successfully to a CHES 2016 capture the flag challenge.
We propose an efficient and secure two-server password-only remote user authentication protocol for consumer electronic devices, such as smartphones and laptops. Our protocol works on-top of any existing trust model, like Secure Sockets Layer protocol (SSL). The proposed protocol is secure against dictionary and impersonation attacks.
This paper describes a novel aerospace electronic component risk assessment methodology and supporting virtual laboratory structure designed to augment existing supply chain management practices and aid in Microelectronics Trust Assurance. This toolkit and methodology applies structure to the unclear and evolving risk assessment problem, allowing quantification of key risks affecting both advanced and obsolete systems that rely on semiconductor technologies. The impacts of logistics & supply chain risk, technology & counterfeit risk, and faulty component risk on trusted and non-trusted procurement options are quantified. The benefits of component testing on part reliability are assessed and incorporated into counterfeit mitigation calculations. This toolkit and methodology seek to assist acquisition staff by providing actionable decision data regarding the increasing threat of counterfeit components by assessing the risks faced by systems, identifying mitigation strategies to reduce this risk, and resolving these risks through the optimal test and procurement path based on the component criticality risk tolerance of the program.
Online Social Networks (OSNs) are continuously suffering from the negative impact of Cross-Site Scripting (XSS) vulnerabilities. This paper describes a novel framework for mitigating XSS attack on OSN-based platforms. It is completely based on the request authentication and view isolation approach. It detects XSS attack through validating string value extracted from the vulnerable checkpoint present in the web page by implementing string examination algorithm with the help of XSS attack vector repository. Any similarity (i.e. string is not validated) indicates the presence of malicious code injected by the attacker and finally it removes the script code to mitigate XSS attack. To assess the defending ability of our designed model, we have tested it on OSN-based web application i.e. Humhub. The experimental results revealed that our model discovers the XSS attack vectors with low false negatives and false positive rate tolerable performance overhead.