Biblio
The manufacturing process of electrical machines influences the geometric dimensions and material properties, e.g. the yoke thickness. These influences occur by statistical variation as manufacturing tolerances. The effect of these tolerances and their potential impact on the mechanical torque output is not fully studied up to now. This paper conducts a sensitivity analysis for geometric and material parameters. For the general approach these parameters are varied uniformly in a range of 10 %. Two dimensional finite element analysis is used to simulate the influences at three characteristic operating points. The studied object is an internal permanent magnet machine in the 100 kW range used for hybrid drive applications. The results show a significant dependency on the rotational speed. The general validity is studied by using boundary condition variations and two further machine designs. This procedure offers the comparison of matching qualitative results for small quantitative deviations. For detecting the impact of the manufacturing process realistic tolerance ranges are used. This investigation identifies the airgap and magnet remanence induction as the main parameters for potential torque fluctuation.
The inevitable temperature raise leads to the demagnetization of permanent magnet synchronous motor (PMSM), that is undesirable in the application of electrical vehicle. This paper presents a nonlinear demagnetization model taking into account temperature with the Wiener structure and neural network characteristics. The remanence and intrinsic coercivity are chosen as intermediate variables, thus the relationship between motor temperature and maximal permanent magnet flux is described by the proposed neural Wiener model. Simulation and experimental results demonstrate the precision of temperature dependent demagnetization model. This work makes the basis of temperature compensation for the output torque from PMSM.
Substituting neodymium with ferrite based magnets comes with the penalty of significant reduced magnetic field energy. Several possibilities to compensate for the negative effects of a lower remanence and coercivity provided by ferrite magnets are presented and finally combined into the development of a new kind of BLDC-machine design. The new design is compared to a conventional machine on the application example of an electric 800 W/48 V automotive coolant pump.
This paper presents the analysis and the design of a ferrite permanent magnet synchronous generator (FePMSG) with flux concentration. Despite the well-known advantages of rare earth permanent magnet synchronous generators (REPMSG), the high cost of the rare earth permanent magnets represents an important drawback, particularly in competitive markets like the wind power. To reduce the cost of permanent magnet machines it is possible to replace the expensive rare earth materials by ferrite. Once ferrite has low remanent magnetization, flux concentration techniques are used to design a cheaper generator. The designed FePMSG is compared with a reference rare earth (NdFeB) permanent magnet synchronous generator (REPMSG), both with 3 kW, 220 V and 350 rpm. The results, validated with finite element analysis, show that the FePMSG can replace the REPMSG reducing significantly the active material cost.
Many aspects of our daily lives now rely on computers, including communications, transportation, government, finance, medicine, and education. However, with increased dependence comes increased vulnerability. Therefore recognizing attacks quickly is critical. In this paper, we introduce a new anomaly detection algorithm based on persistent homology, a tool which computes summary statistics of a manifold. The idea is to represent a cyber network with a dynamic point cloud and compare the statistics over time. The robustness of persistent homology makes for a very strong comparison invariant.
Protecting Critical Infrastructures (CIs) against contemporary cyber attacks has become a crucial as well as complex task. Modern attack campaigns, such as Advanced Persistent Threats (APTs), leverage weaknesses in the organization's business processes and exploit vulnerabilities of several systems to hit their target. Although their life-cycle can last for months, these campaigns typically go undetected until they achieve their goal. They usually aim at performing data exfiltration, cause service disruptions and can also undermine the safety of humans. Novel detection techniques and incident handling approaches are therefore required, to effectively protect CI's networks and timely react to this type of threats. Correlating large amounts of data, collected from a multitude of relevant sources, is necessary and sometimes required by national authorities to establish cyber situational awareness, and allow to promptly adopt suitable countermeasures in case of an attack. In this paper we propose three novel methods for security information correlation designed to discover relevant insights and support the establishment of cyber situational awareness.
Software components, which are vulnerable to being exploited, need to be identified and patched. Employing any prevention techniques designed for the purpose of detecting vulnerable software components in early stages can reduce the expenses associated with the software testing process significantly and thus help building a more reliable and robust software system. Although previous studies have demonstrated the effectiveness of adapting prediction techniques in vulnerability detection, the feasibility of those techniques is limited mainly because of insufficient training data sets. This paper proposes a prediction technique targeting at early identification of potentially vulnerable software components. In the proposed scheme, the potentially vulnerable components are viewed as mislabeled data that may contain true but not yet observed vulnerabilities. The proposed hybrid technique combines the supports vector machine algorithm and ensemble learning strategy to better identify potential vulnerable components. The proposed vulnerability detection scheme is evaluated using some Java Android applications. The results demonstrated that the proposed hybrid technique could identify potentially vulnerable classes with high precision and relatively acceptable accuracy and recall.
As everyone knows vulnerability detection is a very difficult and time consuming work, so taking advantage of the unlabeled data sufficiently is needed and helpful. According the above reality, in this paper a method is proposed to predict buffer overflow based on semi-supervised learning. We first employ Antlr to extract AST from C/C++ source files, then according to the 22 buffer overflow attributes taxonomies, a 22-dimension vector is extracted from every function in AST, at last, the vector is leveraged to train a classifier to predict buffer overflow vulnerabilities. The experiment and evaluation indicate our method is correct and efficient.
Attacks against websites are increasing rapidly with the expansion of web services. An increasing number of diversified web services make it difficult to prevent such attacks due to many known vulnerabilities in websites. To overcome this problem, it is necessary to collect the most recent attacks using decoy web honeypots and to implement countermeasures against malicious threats. Web honeypots collect not only malicious accesses by attackers but also benign accesses such as those by web search crawlers. Thus, it is essential to develop a means of automatically identifying malicious accesses from mixed collected data including both malicious and benign accesses. Specifically, detecting vulnerability scanning, which is a preliminary process, is important for preventing attacks. In this study, we focused on classification of accesses for web crawling and vulnerability scanning since these accesses are too similar to be identified. We propose a feature vector including features of collective accesses, e.g., intervals of request arrivals and the dispersion of source port numbers, obtained with multiple honeypots deployed in different networks for classification. Through evaluation using data collected from 37 honeypots in a real network, we show that features of collective accesses are advantageous for vulnerability scanning and crawler classification.
In this work we put forward our novel approach using graph partitioning and Micro-Community detection techniques. We firstly use algebraic connectivity or Fiedler Eigenvector and spectral partitioning for community detection. We then used modularity maximization and micro level clustering for detecting micro-communities with concept of community energy. We run micro-community clustering algorithm recursively with modularity maximization which helps us identify dense, deeper and hidden community structures. We experimented our MicroCommunity Clustering (MCC) algorithm for various types of complex technological and social community networks such as directed weighted, directed unweighted, undirected weighted, undirected unweighted. A novel fact about this algorithm is that it is scalable in nature.
This paper presents the Scanning, Vulnerabilities, Exploits and Detection tool (SVED). SVED facilitates reliable and repeatable cyber security experiments by providing a means to design, execute and log malicious actions, such as software exploits, as well the alerts provided by intrusion detection systems. Due to its distributed architecture, it is able to support large experiments with thousands of attackers, sensors and targets. SVED is automatically updated with threat intelligence information from various services.
Vulnerability Detection Tools (VDTs) have been researched and developed to prevent problems with respect to security. Such tools identify vulnerabilities that exist on the server in advance. By using these tools, administrators must protect their servers from attacks. They have, however, different results since methods for detection of different tools are not the same. For this reason, it is recommended that results are gathered from many tools rather than from a single tool but the installation which all of the tools have requires a great overhead. In this paper, we propose a novel vulnerability detection mechanism using Open API and use OpenVAS for actual testing.
Integrating security testing into the workflow of software developers not only can save resources for separate security testing but also reduce the cost of fixing security vulnerabilities by detecting them early in the development cycle. We present an automatic testing approach to detect a common type of Cross Site Scripting (XSS) vulnerability caused by improper encoding of untrusted data. We automatically extract encoding functions used in a web application to sanitize untrusted inputs and then evaluate their effectiveness by automatically generating XSS attack strings. Our evaluations show that this technique can detect 0-day XSS vulnerabilities that cannot be found by static analysis tools. We will also show that our approach can efficiently cover a common type of XSS vulnerability. This approach can be generalized to test for input validation against other types injections such as command line injection.
Proxy Re-Encryption (PRE) is a favorable primitive to realize a cryptographic cloud with secure and flexible data sharing mechanism. A number of PRE schemes with versatile capabilities have been proposed for different applications. The secure data sharing can be internally achieved in each PRE scheme. But no previous work can guarantee the secure data sharing among different PRE schemes in a general manner. Moreover, it is challenging to solve this problem due to huge differences among the existing PRE schemes in their algebraic systems and public-key types. To solve this problem more generally, this paper uniforms the definitions of the existing PRE and Public Key Encryption (PKE) schemes, and further uniforms their security definitions. Then taking any uniformly defined PRE scheme and any uniformly defined PKE scheme as two building blocks, this paper constructs a Generally Hybrid Proxy Re-Encryption (GHPRE) scheme with the idea of temporary public and private keys to achieve secure data sharing between these two underlying schemes. Since PKE is a more general definition than PRE, the proposed GHPRE scheme also is workable between any two PRE schemes. Moreover, the proposed GHPRE scheme can be transparently deployed even if the underlying PRE schemes are implementing.