Visible to the public Biblio

Filters: Keyword is transaction processing  [Clear All Filters]
2021-03-09
Soni, D. K., Sharma, H., Bhushan, B., Sharma, N., Kaushik, I..  2020.  Security Issues Seclusion in Bitcoin System. 2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT). :223—229.

In the dawn of crypto-currencies the most talked currency is Bitcoin. Bitcoin is widely flourished digital currency and an exchange trading commodity implementing peer-to-peer payment network. No central athourity exists in Bitcoin. The users in network or pool of bitcoin need not to use real names, rather they use pseudo names for managing and verifying transactions. Due to the use of pseudo names bitcoin is apprehended to provide anonymity. However, the most transparent payment network is what bitcoin is. Here all the transactions are publicly open. To furnish wholeness and put a stop to double-spending, Blockchain is used, which actually works as a ledger for management of Bitcoins. Blockchain can be misused to monitor flow of bitcoins among multiple transactions. When data from external sources is amalgamated with insinuation acquired from the Blockchain, it may result to reveal user's identity and profile. In this way the activity of user may be traced to an extent to fraud that user. Along with the popularity of Bitcoins the number of adversarial attacks has also gain pace. All these activities are meant to exploit anonymity and privacy in Bitcoin. These acivities result in loss of bitcoins and unlawful profit to attackers. Here in this paper we tried to present analysis of major attacks such as malicious attack, greater than 52% attacks and block withholding attack. Also this paper aims to present analysis and improvements in Bitcoin's anonymity and privacy.

2021-03-04
Cao, L., Wan, Z..  2020.  Anonymous scheme for blockchain atomic swap based on zero-knowledge proof. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :371—374.
The blockchain's cross-chain atomic exchange uses smart contracts to replace trusted third parties, but atomic exchange cannot guarantee the anonymity of transactions, and it will inevitably increase the risk of privacy leakage. Therefore, this paper proposes an atom based on zero-knowledge proof. Improved methods of exchange to ensure the privacy of both parties in a transaction. The anonymous improvement scheme in this article uses the UTXO unconsumed model to add a new anonymous list in the blockchain. When sending assets to smart contracts, zero-knowledge proof is used to provide self-certification of ownership of the asset, and then the transaction is broken down. Only the hash value of the transaction is sent to the node, and the discarded list is used to verify the validity of the transaction, which achieves the effect of storing assets anonymously in the smart contract. At the same time, a smart contract is added when the two parties in the transaction communicate to exchange the contract address of the newly set smart contract between the two parties in the transaction. This can prevent the smart contract address information from being stolen when the two parties in the transaction communicate directly.
2021-02-23
Fan, W., Chang, S.-Y., Emery, S., Zhou, X..  2020.  Blockchain-based Distributed Banking for Permissioned and Accountable Financial Transaction Processing. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—9.

Distributed banking platforms and services forgo centralized banks to process financial transactions. For example, M-Pesa provides distributed banking service in the developing regions so that the people without a bank account can deposit, withdraw, or transfer money. The current distributed banking systems lack the transparency in monitoring and tracking of distributed banking transactions and thus do not support auditing of distributed banking transactions for accountability. To address this issue, this paper proposes a blockchain-based distributed banking (BDB) scheme, which uses blockchain technology to leverage its built-in properties to record and track immutable transactions. BDB supports distributed financial transaction processing but is significantly different from cryptocurrencies in its design properties, simplicity, and computational efficiency. We implement a prototype of BDB using smart contract and conduct experiments to show BDB's effectiveness and performance. We further compare our prototype with the Ethereum cryptocurrency to highlight the fundamental differences and demonstrate the BDB's superior computational efficiency.

Gaber, C., Vilchez, J. S., Gür, G., Chopin, M., Perrot, N., Grimault, J.-L., Wary, J.-P..  2020.  Liability-Aware Security Management for 5G. 2020 IEEE 3rd 5G World Forum (5GWF). :133—138.

Multi-party and multi-layer nature of 5G networks implies the inherent distribution of management and orchestration decisions across multiple entities. Therefore, responsibility for management decisions concerning end-to-end services become blurred if no efficient liability and accountability mechanism is used. In this paper, we present the design, building blocks and challenges of a Liability-Aware Security Management (LASM) system for 5G. We describe how existing security concepts such as manifests and Security-by-Contract, root cause analysis, remote attestation, proof of transit, and trust and reputation models can be composed and enhanced to take risk and responsibilities into account for security and liability management.

2020-10-06
Ibrahim, Romani Farid.  2019.  Mobile Transaction Processing for a Distributed War Environment. 2019 14th International Conference on Computer Science Education (ICCSE). :856—862.

The battlefield environment differs from the natural environment in terms of irregular communications and the possibility of destroying communication and medical units by enemy forces. Information that can be collected in a war environment by soldiers is important information and must reach top-level commanders in time for timely decisions making. Also, ambulance staff in the battlefield need to enter the data of injured soldiers after the first aid, so that the information is available for the field hospital staff to prepare the needs for incoming injured soldiers.In this research, we propose two transaction techniques to handle these issues and use different concurrency control protocols, depending on the nature of the transaction and not a one concurrency control protocol for all types of transactions. Message transaction technique is used to collect valuable data from the battlefield by soldiers and allows top-level commanders to view it according to their permissions by logging into the system, to help them make timely decisions. In addition, use the capabilities of DBMS tools to organize data and generate reports, as well as for future analysis. Medical service unit transactional workflow technique is used to provides medical information to the medical authorities about the injured soldiers and their status, which helps them to prepare the required needs before the wounded soldiers arrive at the hospitals. Both techniques handle the disconnection problem during transaction processing.In our approach, the transaction consists of four phases, reading, editing, validation, and writing phases, and its processing is based on the optimistic concurrency control protocol, and the rules of actionability that describe how a transaction behaves if a value-change is occurred on one or more of its attributes during its processing time by other transactions.

2020-09-28
Guo, Hao, Li, Wanxin, Nejad, Mark, Shen, Chien-Chung.  2019.  Access Control for Electronic Health Records with Hybrid Blockchain-Edge Architecture. 2019 IEEE International Conference on Blockchain (Blockchain). :44–51.
The global Electronic Health Record (EHR) market is growing dramatically and expected to reach \$39.7 billions by 2022. To safe-guard security and privacy of EHR, access control is an essential mechanism for managing EHR data. This paper proposes a hybrid architecture to facilitate access control of EHR data by using both blockchain and edge node. Within the architecture, a blockchain-based controller manages identity and access control policies and serves as a tamper-proof log of access events. In addition, off-chain edge nodes store the EHR data and apply policies specified in Abbreviated Language For Authorization (ALFA) to enforce attribute-based access control on EHR data in collaboration with the blockchain-based access control logs. We evaluate the proposed hybrid architecture by utilizing Hyperledger Composer Fabric blockchain to measure the performance of executing smart contracts and ACL policies in terms of transaction processing time and response time against unauthorized data retrieval.
Yang, Shu, Chen, Ziteng, Cui, Laizhong, Xu, Mingwei, Ming, Zhongxing, Xu, Ke.  2019.  CoDAG: An Efficient and Compacted DAG-Based Blockchain Protocol. 2019 IEEE International Conference on Blockchain (Blockchain). :314–318.
Blockchain is seen as a promising technology to provide reliable and secure services due to its decentralized characteristic. However, because of the limited throughput, current blockchain platforms can not meet the transaction demand in practical use. Though researchers proposed many new solutions, they suffered either decentralization or security issues. In this paper, using Directed Acyclic Graph (DAG) structure, we improve the linear structure of traditional blockchain protocol. In the new structure, blocks are organized in levels and width, which will generate into a compacted DAG structure (CoDAG). To make CoDAG more efficient and secure, we design algorithms and protocols to place the new-generated blocks appropriately. Compared with traditional blockchain protocols, CoDAG improves the security and transaction verification time, and enjoys the consistency and liveness properties of blockchain. Taking adversary parties into consideration, two possible attack strategies are presented in this paper, and we further prove that CoDAG is a secure and robust protocol to resist them. The experimental results show that CoDAG can achieve 394 transactions per second, which is 56 times of Bitcoin's throughput and 26 times of Ethereum's.
2020-09-21
Wang, Zan-Jun, Lin, Ching-Hua Vivian, Yuan, Yang-Hao, Huang, Ching-Chun Jim.  2019.  Decentralized Data Marketplace to Enable Trusted Machine Economy. 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE). :246–250.
Transacting IoT data must be different in many from traditional approaches in order to build much-needed trust in data marketplaces, trust that will be the key to their sustainability. Data generated internally to an organization is usually not enough to remain competitive, enhance customer experiences, or improve strategic decision-making. In this paper, we propose a decentralized and trustless architecture through the posting of trade records while including the transaction process on distributed ledgers. This approach can efficiently enhance the degree of transparency, as all contract-oriented interactions will be written on-chain. Storage via an end-to-end encrypted message channel allows transmitting and accessing trusted data streams over distributed ledgers regardless of the size or cost of the device, while simultaneously making a verifiable Auth-compliant request to the platform. Furthermore, the platform will complete matching, trading and refunding processes with-out human intervention, and it also protects the rights of data providers and consumers through trading policies which apply revolutionary game theory to the machine economy.
2020-09-04
Ichsani, Yuditha, Deyani, Resisca Audia, Bahaweres, Rizal Broer.  2019.  The Cryptocurrency Simulation using Elliptic Curve Cryptography Algorithm in Mining Process from Normal, Failed, and Fake Bitcoin Transactions. 2019 7th International Conference on Cyber and IT Service Management (CITSM). 7:1—8.
On each cryptocurrency transaction, a high-level security is needed to protect user data as well as data on the transaction. At this stage, it takes the appropriate algorithm in securing transactions with more efficient processing time. The Elliptic Curve Cryptography (ECC) is one of the cryptography algorithms which has high-level security, and ECC is often compared with the Rivest, Shamir, and Adleman (RSA) algorithm because it has a security level that is almost the same but has some differences that make ECC is superior compared to the RSA algorithm, so that the ECC algorithm can optimize cryptocurrency security in the transaction process. The purpose of this study is to simulate the bitcoin transactions using cryptography algorithms. This study uses the ECC algorithm as the algorithm ECDH and ECDSA key exchange as the algorithm for signing and verifying. The comparison results of ECC and RSA processing time is 1:25, so the ECC is more efficient. The total processing time of ECC is 0,006 seconds and RSA is 0,152 seconds. The researcher succeeded to implement the ECC algorithm as securing algorithms in mining process of 3 scenarios, normal, failed, and fake bitcoin transactions.
Wu, Yan, Luo, Anthony, Xu, Dianxiang.  2019.  Forensic Analysis of Bitcoin Transactions. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :167—169.
Bitcoin [1] as a popular digital currency has been a target of theft and other illegal activities. Key to the forensic investigation is to identify bitcoin addresses involved in bitcoin transfers. This paper presents a framework, FABT, for forensic analysis of bitcoin transactions by identifying suspicious bitcoin addresses. It formalizes the clues of a given case as transaction patterns defined over a comprehensive set of features. FABT converts the bitcoin transaction data into a formal model, called Bitcoin Transaction Net (BTN). The traverse of all bitcoin transactions in the order of their occurrences is captured by the firing sequence of all transitions in the BTN. We have applied FABT to identify suspicious addresses in the Mt.Gox case. A subgroup of the suspicious addresses has been found to share many characteristics about the received/transferred amount, number of transactions, and time intervals.
2020-04-06
Sun, YunZhe, Zhao, QiXi, Zhang, PeiYun.  2019.  Trust Degree Calculation Method Based on Trust Blockchain Node. 2019 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI). :122–127.
Due to the diversity and mobility of blockchain network nodes and the decentralized nature of blockchain networks, traditional trust value evaluation indicators cannot be directly used. In order to obtain trusted nodes, a trustworthiness calculation method based on trust blockchain nodes is proposed. Different from the traditional P2P network trust value calculation, the trust blockchain not only acquires the working state of the node, but also collects the special behavior information of the node, and calculates the joining time by synthesizing the trust value generated by the node transaction and the trust value generated by the node behavior. After the attenuation factor is comprehensively evaluated, the trusted nodes are selected to effectively ensure the security of the blockchain network environment, while reducing the average transaction delay and increasing the block rate.
2020-03-30
Ximenes, Agostinho Marques, Sukaridhoto, Sritrusta, Sudarsono, Amang, Ulil Albaab, Mochammad Rifki, Basri, Hasan, Hidayat Yani, Muhammad Aksa, Chang Choon, Chew, Islam, Ezharul.  2019.  Implementation QR Code Biometric Authentication for Online Payment. 2019 International Electronics Symposium (IES). :676–682.
Based on the Indonesian of Statistics the level of society people in 2019 is grow up. Based on data, the bank conducted a community to simple transaction payment in the market. Bank just used a debit card or credit card for the transaction, but the banks need more investment for infrastructure and very expensive. Based on that cause the bank needs another solution for low-cost infrastructure. Obtained from solutions that, the bank implementation QR Code Biometric authentication Payment Online is one solution that fulfills. This application used for payment in online merchant. The transaction permits in this study lie in the biometric encryption, or decryption transaction permission and QR Code Scan to improve communication security and transaction data. The test results of implementation Biometric Cloud Authentication Platform show that AES 256 agents can be implemented for face biometric encryption and decryption. Code Scan QR to carry out transaction permits with Face verification transaction permits gets the accuracy rate of 95% for 10 sample people and transaction process gets time speed of 53.21 seconds per transaction with a transaction sample of 100 times.
Khan, Abdul Ghaffar, Zahid, Amjad Hussain, Hussain, Muzammil, Riaz, Usama.  2019.  Security Of Cryptocurrency Using Hardware Wallet And QR Code. 2019 International Conference on Innovative Computing (ICIC). :1–10.
Today, the privacy and the security of any organization are the key requirement, the digital online transaction of money or coins also needed a certain level of security not only during the broadcasting of the transaction but before the sending of the transaction. In this research paper we proposed and implemented a cryptocurrency (Bitcoin) wallet for the android operating system, by using the QR code-based android application and a secure private key storage (Cold Wallet). Two android applications have been implemented one of them is called cold wallet and the other one is hot wallet. Cold wallet (offline) is to store and generate the private key addresses for secure transaction confirmation and the hot wallet is used to send bitcoin to the network. Hot wallet application gives facility to the user view history of performed transactions, to send and compose a new bitcoin transaction, receive bitcoin, sign it and send it to the network. By using the process of cross QR code scanning of the hot and cold wallet to the identification, validation and authentication of the user made it secure.
2020-02-10
Taher, Kazi Abu, Nahar, Tahmin, Hossain, Syed Akhter.  2019.  Enhanced Cryptocurrency Security by Time-Based Token Multi-Factor Authentication Algorithm. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :308–312.
A noble multi-factor authentication (MFA) algorithm is developed for the security enhancement of the Cryptocurrency (CR). The main goal of MFA is to set up extra layer of safeguard while seeking access to a targets such as physical location, computing device, network or database. MFA security scheme requires more than one method for the validation from commutative family of credentials to verify the user for a transaction. MFA can reduce the risk of using single level password authentication by introducing additional factors of authentication. MFA can prevent hackers from gaining access to a particular account even if the password is compromised. The superfluous layer of security introduced by MFA offers additional security to a user. MFA is implemented by using time-based onetime password (TOTP) technique. For logging to any entity with MFA enabled, the user first needs username and password, as a second factor, the user then needs the MFA token to virtually generate a TOTP. It is found that MFA can provide a better means of secured transaction of CR.
2018-02-15
Fraser, J. G., Bouridane, A..  2017.  Have the security flaws surrounding BITCOIN effected the currency's value? 2017 Seventh International Conference on Emerging Security Technologies (EST). :50–55.

When Bitcoin was first introduced to the world in 2008 by an enigmatic programmer going by the pseudonym Satoshi Nakamoto, it was billed as the world's first decentralized virtual currency. Offering the first credible incarnation of a digital currency, Bitcoin was based on the principal of peer to peer transactions involving a complex public address and a private key that only the owner of the coin would know. This paper will seek to investigate how the usage and value of Bitcoin is affected by current events in the cyber environment. Is an advancement in the digital security of Bitcoin reflected by the value of the currency and conversely does a major security breech have a negative effect? By analyzing statistical data of the market value of Bitcoin at specific points where the currency has fluctuated dramatically, it is believed that trends can be found. This paper proposes that based on the data analyzed, the current integrity of the Bitcoin security is trusted by general users and the value and usage of the currency is growing. All the major fluctuations of the currency can be linked to significant events within the digital security environment however these fluctuations are beginning to decrease in frequency and severity. Bitcoin is still a volatile currency but this paper concludes that this is a result of security flaws in Bitcoin services as opposed to the Bitcoin protocol itself.

2017-12-28
Chatti, S., Ounelli, H..  2017.  Fault Tolerance in a Cloud of Databases Environment. 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA). :166–171.

We will focused the concept of serializability in order to ensure the correct processing of transactions. However, both serializability and relevant properties within transaction-based applications might be affected. Ensure transaction serialization in corrupt systems is one of the demands that can handle properly interrelated transactions, which prevents blocking situations that involve the inability to commit either transaction or related sub-transactions. In addition some transactions has been marked as malicious and they compromise the serialization of running system. In such context, this paper proposes an approach for the processing of transactions in a cloud of databases environment able to secure serializability in running transactions whether the system is compromised or not. We propose also an intrusion tolerant scheme to ensure the continuity of the running transactions. A case study and a simulation result are shown to illustrate the capabilities of the suggested system.

Chatti, S., Ounelli, H..  2016.  An Intrusion Tolerance Scheme for a Cloud of Databases Environment. 2016 19th International Conference on Network-Based Information Systems (NBiS). :474–479.

The serializability of transactions is the most important property that ensure correct processing to transactions. In case of concurrent access to the same data by several transactions, or in case of dependency relationships between running sub transactions. But some transactions has been marked as malicious and they compromise the serialization of running system. For that purpose, we propose an intrusion tolerant scheme to ensure the continuity of the running transactions. A transaction dependency graph is also used by the CDC to make decisions concerning the set of data and transactions that are threatened by a malicious activity. We will give explanations about how to use the proposed scheme to illustrate its behavior and efficiency against a compromised transaction-based in a cloud of databases environment. Several issues should be considered when dealing with the processing of a set of interleaved transactions in a transaction based environment. In most cases, these issues are due to the concurrent access to the same data by several transactions or the dependency relationship between running transactions. The serializability may be affected if a transaction that belongs to the processing node is compromised.

2017-05-16
Ren, Kun, Diamond, Thaddeus, Abadi, Daniel J., Thomson, Alexander.  2016.  Low-Overhead Asynchronous Checkpointing in Main-Memory Database Systems. Proceedings of the 2016 International Conference on Management of Data. :1539–1551.

As it becomes increasingly common for transaction processing systems to operate on datasets that fit within the main memory of a single machine or a cluster of commodity machines, traditional mechanisms for guaranteeing transaction durability–-which typically involve synchronous log flushes–-incur increasingly unappealing costs to otherwise lightweight transactions. Many applications have turned to periodically checkpointing full database state. However, existing checkpointing methods–-even those which avoid freezing the storage layer–-often come with significant costs to operation throughput, end-to-end latency, and total memory usage. This paper presents Checkpointing Asynchronously using Logical Consistency (CALC), a lightweight, asynchronous technique for capturing database snapshots that does not require a physical point of consistency to create a checkpoint, and avoids conspicuous latency spikes incurred by other database snapshotting schemes. Our experiments show that CALC can capture frequent checkpoints across a variety of transactional workloads with extremely small cost to transactional throughput and low additional memory usage compared to other state-of-the-art checkpointing systems.