Biblio
Phishing attacks continue to be one of the most common attack vectors used online today to deceive users, such that attackers can obtain unauthorised access or steal sensitive information. Phishing campaigns often vary in their level of sophistication, from mass distribution of generic content, such as delivery notifications, online purchase orders, and claims of winning the lottery, through to bespoke and highly-personalised messages that convincingly impersonate genuine communications (e.g., spearphishing attacks). There is a distinct trade-off here between the scale of an attack versus the effort required to curate content that is likely to convince an individual to carry out an action (typically, clicking a malicious hyperlink). In this short paper, we conduct a preliminary study on a recent realworld incident that strikes a balance between attacking at scale and personalised content. We adopt different visualisation tools and techniques for better assessing the scale and impact of the attack, that can be used both by security professionals to analyse the security incident, but could also be used to inform employees as a form of security awareness and training. We pitched the approach to IT professionals working in information security, who believe this may provide improved awareness of how targeted phishing campaigns can impact an organisation, and could contribute towards a pro-active step of how analysts will examine and mitigate the impact of future attacks across the organisation.
Before accessing Internet websites or applications, network users first ask the Domain Name System (DNS) for the corresponding IP address, and then the user's browser or application accesses the required resources through the IP address. The server log of DNS keeps records of all users' requesting queries. This paper analyzes the user network accessing behavior by analyzing network DNS log in campus, constructing a behavior fingerprint model for each user. Different users and even same user's fingerprints in different periods can be used to determine whether the user's access is abnormal or safe, whether it is infected with malicious code. After detecting the behavior of abnormal user accessing, preventing the spread of viruses, Trojans, bots and attacks is made possible, which further assists the protection of users' network access security through corresponding techniques. Finally, analysis of user behavior fingerprints of campus network access is conducted.
This paper describes MADHAT (Multidimensional Anomaly Detection fusing HPC, Analytics, and Tensors), an integrated workflow that demonstrates the applicability of HPC resources to the problem of maintaining cyber situational awareness. MADHAT combines two high-performance packages: ENSIGN for large-scale sparse tensor decompositions and HAGGLE for graph analytics. Tensor decompositions isolate coherent patterns of network behavior in ways that common clustering methods based on distance metrics cannot. Parallelized graph analysis then uses directed queries on a representation that combines the elements of identified patterns with other available information (such as additional log fields, domain knowledge, network topology, whitelists and blacklists, prior feedback, and published alerts) to confirm or reject a threat hypothesis, collect context, and raise alerts. MADHAT was developed using the collaborative HPC Architecture for Cyber Situational Awareness (HACSAW) research environment and evaluated on structured network sensor logs collected from Defense Research and Engineering Network (DREN) sites using HPC resources at the U.S. Army Engineer Research and Development Center DoD Supercomputing Resource Center (ERDC DSRC). To date, MADHAT has analyzed logs with over 650 million entries.
A conversational agent to detect anomalous traffic in consumer IoT networks is presented. The agent accepts two inputs in the form of user speech received by Amazon Alexa enabled devices, and classified IDS logs stored in a DynamoDB Table. Aural analysis is used to query the database of network traffic, and respond accordingly. In doing so, this paper presents a solution to the problem of making consumers situationally aware when their IoT devices are infected, and anomalous traffic has been detected. The proposed conversational agent addresses the issue of how to present network information to non-technical users, for better comprehension, and improves awareness of threats derived from the mirai botnet malware.
Traditional risk management produces a rather static listing of weaknesses, probabilities and mitigations. Large share of cyber security risks realize through computer networks. These attacks or attack attempts produce events that are detected by various monitoring techniques such as Intrusion Detection Systems (IDS). Often the link between detecting these potentially dangerous real-time events and risk management process is lacking, or completely missing. This paper presents means for transferring and visualizing the network events in the risk management instantly with a tool called Metrics Visualization System (MVS). The tool is used to dynamically visualize network security events of a Terrestrial Trunked Radio (TETRA) network running in Software Defined Networking (SDN) context as a case study. Visualizations are presented with a treelike graph, that gives a quick easily understandable overview of the cyber security situation. This paper also discusses what network security events are monitored and how they affect the more general risk levels. The major benefit of this approach is that the risk analyst is able to map the designed risk tree/security metrics into actual real-time events and view the system's security posture with the help of a runtime visualization view.
Cyber situational awareness has become increasingly important for proactive risk management to help detect and mitigate cyber attacks. Being aware of the importance of individual information system assets to the goal or mission of the organisation is critical to help minimise enterprise risk. However current risk assessment methodologies do not give explicit support to assess mission related asset criticality. This paper describes ongoing efforts within the H2020 PROTECTIVE project to define a practical mission-centric risk assessment methodology for use across diverse organisation types.
Recently, IoT, 5G mobile, big data, and artificial intelligence are increasingly used in the real world. These technologies are based on convergenced in Cyber Physical System(Cps). Cps technology requires core technologies to ensure reliability, real-time, safety, autonomy, and security. CPS is the system that can connect between cyberspace and physical space. Cyberspace attacks are confused in the real world and have a lot of damage. The personal information that dealing in CPS has high confidentiality, so the policies and technique will needed to protect the attack in advance. If there is an attack on the CPS, not only personal information but also national confidential data can be leaked. In order to prevent this, the risk is measured using the Factor Analysis of Information Risk (FAIR) Model, which can measure risk by element for situational awareness in CPS environment. To reduce risk by preventing attacks in CPS, this paper measures risk after using the concept of Crime Prevention Through Environmental Design(CPTED).
As modern societies become more dependent on IT services, the potential impact both of adversarial cyberattacks and non-adversarial service management mistakes grows. This calls for better cyber situational awareness-decision-makers need to know what is going on. The main focus of this paper is to examine the information elements that need to be collected and included in a common operational picture in order for stakeholders to acquire cyber situational awareness. This problem is addressed through a survey conducted among the participants of a national information assurance exercise conducted in Sweden. Most participants were government officials and employees of commercial companies that operate critical infrastructure. The results give insight into information elements that are perceived as useful, that can be contributed to and required from other organizations, which roles and stakeholders would benefit from certain information, and how the organizations work with creating cyber common operational pictures today. Among findings, it is noteworthy that adversarial behavior is not perceived as interesting, and that the respondents in general focus solely on their own organization.
Password auditing can enhance the cyber situational awareness of defenders, e.g. cyber security/IT professionals, with regards to the strength of text-based authentication mechanisms utilized in an organization. Auditing results can proactively indicate if weak passwords exist in an organization, decreasing the risks of compromisation. Password cracking is a typical and time-consuming way to perform password auditing. Given that defenders perform password auditing within a specific evaluation timeframe, the cracking process needs to be optimized to yield useful results. Existing password cracking tools do not provide holistic features to optimize the process. Therefore, the need arises to build new password auditing toolkits to assist defenders to achieve their task in an effective and efficient way. Moreover, to maximize the benefits of password auditing, a security policy should be utilized. Currently the efforts focus on the specification of password security policies, providing rules on how to construct passwords. This work proposes the functionality that should be supported by next-generation password auditing toolkits and provides guidelines to drive the specification of a relevant password auditing policy.
Traditional security measures for large-scale critical infrastructure systems have focused on keeping adversaries out of the system. As the Internet of Things (IoT) extends into millions of homes, with tens or hundreds of devices each, the threat landscape is complicated. IoT devices have unknown access capabilities with unknown reach into other systems. This paper presents ongoing work on how techniques in sensor verification and cyber-physical modeling and analysis on bulk power systems can be applied to identify malevolent IoT devices and secure smart and connected communities against the most impactful threats.
Robots operating alongside humans in field environments have the potential to greatly increase the situational awareness of their human teammates. A significant challenge, however, is the efficient conveyance of what the robot perceives to the human in order to achieve improved situational awareness. We believe augmented reality (AR), which allows a human to simultaneously perceive the real world and digital information situated virtually in the real world, has the potential to address this issue. We propose to demonstrate that augmented reality can be used to enable human-robot cooperative search, where the robot can both share search results and assist the human teammate in navigating to a search target.
The Air Force is shifting its cybersecurity paradigm from an information technology (IT)-centric toward a mission oriented approach. Instead of focusing on how to defend its IT infrastructure, it seeks to provide mission assurance by defending mission relevant cyber terrain enabling mission execution in a contested environment. In order to actively defend a mission in cyberspace, efforts must be taken to understand and document that mission's dependence on cyberspace and cyber assets. This is known as cyber terrain mission mapping. This paper seeks to define mission mapping and overview methodologies. We also analyze current tools seeking to provide cyber situational awareness through mission mapping or cyber dependency impact analysis and identify existing shortfalls.
Kings Eye is a platform independent situational awareness prototype for smart devices. Platform independence is important as there are more and more soldiers bringing their own devices, with different operating systems, into the field. The concept of Bring Your Own Device (BYOD) is a low-cost approach to equipping soldiers with situational awareness tools and by this it is important to facilitate and evaluate such solutions.