Biblio
Situational awareness during sophisticated cyber attacks on the power grid is critical for the system operator to perform suitable attack response and recovery functions to ensure grid reliability. The overall theme of this paper is to identify existing practical issues and challenges that utilities face while monitoring substations, and to suggest potential approaches to enhance the situational awareness for the grid operators. In this paper, we provide a broad discussion about the various gaps that exist in the utility industry today in monitoring substations, and how those gaps could be addressed by identifying the various data sources and monitoring tools to improve situational awareness. The paper also briefly describes the advantages of contextualizing and correlating substation monitoring alerts using expert systems at the control center to obtain a holistic systems-level view of potentially malicious cyber activity at the substations before they cause impacts to grid operation.
As societies are becoming more dependent on the power grids, the security issues and blackout threats are more emphasized. This paper proposes a new graph model for online visualization and assessment of power grid security. The proposed model integrates topology and power flow information to estimate and visualize interdependencies between the lines in the form of line dependency graph (LDG) and immediate threats graph (ITG). These models enable the system operator to predict the impact of line outage and identify the most vulnerable and critical links in the power system. Line Vulnerability Index (LVI) and Line Criticality Index (LCI) are introduced as two indices extracted from LDG to aid the operator in decision making and contingency selection. This package can be useful in enhancing situational awareness in power grid operation by visualization and estimation of system threats. The proposed approach is tested for security analysis of IEEE 30-bus and IEEE 118-bus systems and the results are discussed.
This paper introduces SONA (Spatiotemporal system Organized for Natural Analysis), a tabletop and tangible controller system for exploring geotagged information, and more specifically, CCTV. SONA's goal is to support a more natural method of interacting with data. Our new interactions are placed in the context of a physical security environment, closed circuit television (CCTV). We present a three-layered detail on demand set of view filters for CCTV feeds on a digital map. These filters are controlled with a novel tangible device for direct interaction. We validate SONA's tangible controller approach with a user study comparing SONA with the existing CCTV multi-screen method. The results of the study show that SONA's tangible interaction method is superior to the multi-screen approach, both in terms of quantitative results, and is preferred by users.
Cybersecurity is one of critical issues in modern military operations. In cyber operations, security professionals depend on various information and security systems to mitigate cyber threats through enhanced cyber situational awareness. Cyber situational awareness can give decision makers mission completeness and providing appropriate timely decision support for proactive response. The crucial information for cyber situational awareness can be collected at network boundaries through deep packet inspection with security systems. Regular expression is regarded as a practical method for deep packet inspection that is considering a next generation intrusion detection and prevention, however, it is not commonly used by the reason of its resource intensive characteristics. In this paper, we describe our effort and achievement on regular expression processing capability in real time and an evaluation method with experimental result.
Data from cyber logs can often be represented as a bipartite graph (e.g. internal IP-external IP, user-application, or client-server). State-of-the-art graph based anomaly detection often generalizes across all types of graphs — namely bipartite and non-bipartite. This confounds the interpretation and use of specific graph features such as degree, page rank, and eigencentrality that can provide a security analyst with rapid situational awareness of their network. Furthermore, graph algorithms applied to data collected from large, distributed enterprise scale networks require accompanying methods that allow them to scale to the data collected. In this paper, we provide a novel, scalable, directional graph projection framework that operates on cyber logs that can be represented as bipartite graphs. This framework computes directional graph projections and identifies a set of interpretable graph features that describe anomalies within each partite.
As one of the security components in cyber situational awareness systems, Intrusion Detection System (IDS) is implemented by many organizations in their networks to address the impact of network attacks. Regardless of the tools and technologies used to generate security alarms, IDS can provide a situation overview of network traffic. With the security alarm data generated, most organizations do not have the right techniques and further analysis to make this alarm data more valuable for the security team to handle attacks and reduce risk to the organization. This paper proposes the IDS Metrics Framework for cyber situational awareness system that includes the latest technologies and techniques that can be used to create valuable metrics for security advisors in making the right decisions. This metrics framework consists of the various tools and techniques used to evaluate the data. The evaluation of the data is then used as a measurement against one or more reference points to produce an outcome that can be very useful for the decision making process of cyber situational awareness system. This metric offers an additional Graphical User Interface (GUI) tools that produces graphical displays and provides a great platform for analysis and decision-making by security teams.
Cyber Physical Systems (CPS) operating in modern critical infrastructures (CIs) are increasingly being targeted by highly sophisticated cyber attacks. Threat actors have quickly learned of the value and potential impact of targeting CPS, and numerous tailored multi-stage cyber-physical attack campaigns, such as Advanced Persistent Threats (APTs), have been perpetrated in the last years. They aim at stealthily compromising systems' operations and cause severe impact on daily business operations such as shutdowns, equipment damage, reputation damage, financial loss, intellectual property theft, and health and safety risks. Protecting CIs against such threats has become as crucial as complicated. Novel distributed detection and reaction methodologies are necessary to effectively uncover these attacks, and timely mitigate their effects. Correlating large amounts of data, collected from a multitude of relevant sources, is fundamental for Security Operation Centers (SOCs) to establish cyber situational awareness, and allow to promptly adopt suitable countermeasures in case of attacks. In our previous work we introduced three methods for security information correlation. In this paper we define metrics and benchmarks to evaluate these correlation methods, we assess their accuracy, and we compare their performance. We finally demonstrate how the presented techniques, implemented within our cyber threat intelligence analysis engine called CAESAIR, can be applied to support incident handling tasks performed by SOCs.
Advances in nanotechnology, large scale computing and communications infrastructure, coupled with recent progress in big data analytics, have enabled linking several billion devices to the Internet. These devices provide unprecedented automation, cognitive capabilities, and situational awareness. This new ecosystem–termed as the Internet-of-Things (IoT)–also provides many entry points into the network through the gadgets that connect to the Internet, making security of IoT systems a complex problem. In this position paper, we argue that in order to build a safer IoT system, we need a radically new approach to security. We propose a new security framework that draws ideas from software defined networks (SDN), and data analytics techniques; this framework provides dynamic policy enforcements on every layer of the protocol stack and can adapt quickly to a diverse set of industry use-cases that IoT deployments cater to. Our proposal does not make any assumptions on the capabilities of the devices - it can work with already deployed as well as new types of devices, while also conforming to a service-centric architecture. Even though our focus is on industrial IoT systems, the ideas presented here are applicable to IoT used in a wide array of applications. The goal of this position paper is to initiate a dialogue among standardization bodies and security experts to help raise awareness about network-centric approaches to IoT security.
A lack of awareness surrounding secure online behaviour can lead to end-users, and their personal details becoming vulnerable to compromise. This paper describes an ongoing research project in the field of usable security, examining the relationship between end-user-security behaviour, and the use of affective feedback to educate end-users. Part of the aforementioned research project considers the link between categorical information users reveal about themselves online, and the information users believe, or report that they have revealed online. The experimental results confirm a disparity between information revealed, and what users think they have revealed, highlighting a deficit in security awareness. Results gained in relation to the affective feedback delivered are mixed, indicating limited short-term impact. Future work seeks to perform a long-term study, with the view that positive behavioural changes may be reflected in the results as end-users become more knowledgeable about security awareness.
In recent years, the usage of unmanned aircraft systems (UAS) for security-related purposes has increased, ranging from military applications to different areas of civil protection. The deployment of UAS can support security forces in achieving an enhanced situational awareness. However, in order to provide useful input to a situational picture, sensor data provided by UAS has to be integrated with information about the area and objects of interest from other sources. The aim of this study is to design a high-level data fusion component combining probabilistic information processing with logical and probabilistic reasoning, to support human operators in their situational awareness and improving their capabilities for making efficient and effective decisions. To this end, a fusion component based on the ISR (Intelligence, Surveillance and Reconnaissance) Analytics Architecture (ISR-AA) [1] is presented, incorporating an object-oriented world model (OOWM) for information integration, an expressive knowledge model and a reasoning component for detection of critical events. Approaches for translating the information contained in the OOWM into either an ontology for logical reasoning or a Markov logic network for probabilistic reasoning are presented.
Mission assurance requires effective, near-real time defensive cyber operations to appropriately respond to cyber attacks, without having a significant impact on operations. The ability to rapidly compute, prioritize and execute network-based courses of action (CoAs) relies on accurate situational awareness and mission-context information. Although diverse solutions exist for automatically collecting and analysing infrastructure data, few deliver automated analysis and implementation of network-based CoAs in the context of the ongoing mission. In addition, such processes can be operatorintensive and available tools tend to be specific to a set of common data sources and network responses. To address these issues, Defence Research and Development Canada (DRDC) is leading the development of the Automated Computer Network Defence (ARMOUR) technology demonstrator and cyber defence science and technology (S&T) platform. ARMOUR integrates new and existing off-the-shelf capabilities to provide enhanced decision support and to automate many of the tasks currently executed manually by network operators. This paper describes the cyber defence integration framework, situational awareness, and automated mission-oriented decision support that ARMOUR provides.
Graph analysis can capture relationships between network entities and can be used to identify and rank anomalous hosts, users, or applications from various types of cyber logs. It is often the case that the data in the logs can be represented as a bipartite graph (e.g. internal IP-external IP, user-application, or client-server). State-of-the-art graph based anomaly detection often generalizes across all types of graphs — namely bipartite and non-bipartite. This confounds the interpretation and use of specific graph features such as degree, page rank, and eigencentrality that can provide a security analyst with situational awareness and even insights to potential attacks on enterprise scale networks. Furthermore, graph algorithms applied to data collected from large, distributed enterprise scale networks require accompanying methods that allow them to scale to the data collected. In this paper, we provide a novel, scalable, directional graph projection framework that operates on cyber logs that can be represented as bipartite graphs. We also present methodologies to further narrow returned results to anomalous/outlier cases that may be indicative of a cyber security event. This framework computes directional graph projections and identifies a set of interpretable graph features that describe anomalies within each partite.
Bluetooth reliant devices are increasingly proliferating into various industry and consumer sectors as part of a burgeoning wearable market that adds convenience and awareness to everyday life. Relying primarily on a constantly changing hop pattern to reduce data sniffing during transmission, wearable devices routinely disconnect and reconnect with their base station (typically a cell phone), causing a connection repair each time. These connection repairs allow an adversary to determine what local wearable devices are communicating to what base stations. In addition, data transmitted to a base station as part of a wearable app may be forwarded onward to an awaiting web API even if the base station is in an insecure environment (e.g. a public Wi-Fi). In this paper, we introduce an approach to increase the security and privacy associated with using wearable devices by imposing transmission changes given situational awareness of the base station. These changes are asserted via policy rules based on the sensor information from the wearable devices collected and aggregated by the base system. The rules are housed in an application on the base station that adapts the base station to a state in which it prevents data from being transmitted by the wearable devices without disconnecting the devices. The policies can be updated manually or through an over the air update as determined by the user.
Usage patterns of mobile devices depend on a variety of factors such as time, location, and previous actions. Hence, context-awareness can be the key to make mobile systems to become personalized and situation dependent in managing their resources. We first reveal new findings from our own Android user experiment: (i) the launching probabilities of applications follow Zipf's law, and (ii) inter-running and running times of applications conform to log-normal distributions. We also find context-dependency in application usage patterns, for which we classify contexts in a personalized manner with unsupervised learning methods. Using the knowledge acquired, we develop a novel context-aware application scheduling framework, CAS that adaptively unloads and preloads background applications in a timely manner. Our trace-driven simulations with 96 user traces demonstrate the benefits of CAS over existing algorithms. We also verify the practicality of CAS by implementing it on the Android platform.
With limited battery supply, power is a scarce commodity in wireless sensor networks. Thus, to prolong the lifetime of the network, it is imperative that the sensor resources are managed effectively. This task is particularly challenging in heterogeneous sensor networks for which decisions and compromises regarding sensing strategies are to be made under time and resource constraints. In such networks, a sensor has to reason about its current state to take actions that are deemed appropriate with respect to its mission, its energy reserve, and the survivability of the overall network. Sensor Management controls and coordinates the use of the sensory suites in a manner that maximizes the success rate of the system in achieving its missions. This article focuses on formulating and developing an autonomous energy-aware sensor management system that strives to achieve network objectives while maximizing its lifetime. A team-theoretic formulation based on the Belief-Desire-Intention (BDI) model and the Joint Intention theory is proposed as a mechanism for effective and energy-aware collaborative decision-making. The proposed system models the collective behavior of the sensor nodes using the Joint Intention theory to enhance sensors’ collaboration and success rate. Moreover, the BDI modeling of the sensor operation and reasoning allows a sensor node to adapt to the environment dynamics, situation-criticality level, and availability of its own resources. The simulation scenario selected in this work is the surveillance of the Waterloo International Airport. Various experiments are conducted to investigate the effect of varying the network size, number of threats, threat agility, environment dynamism, as well as tracking quality and energy consumption, on the performance of the proposed system. The experimental results demonstrate the merits of the proposed approach compared to the state-of-the-art centralized approach adapted from Atia et al. [2011] and the localized approach in Hilal and Basir [2015] in terms of energy consumption, adaptability, and network lifetime. The results show that the proposed approach has 12 × less energy consumption than that of the popular centralized approach.
This paper proposes a taxonomy of autonomous vehicle handover situations with a particular emphasis on situational awareness. It focuses on a number of research challenges such as: legal responsibility, the situational awareness level of the driver and the vehicle, the knowledge the vehicle must have of the driver's driving skills as well as the in-vehicle context. The taxonomy acts as a starting point for researchers and practitioners to frame the discussion on this complex problem.
We propose PADA, a new power evaluation tool to measure and optimize power use of mobile sensing applications. Our motivational study with 53 professional developers shows they face huge challenges in meeting power requirements. The key challenges are from the significant time and effort for repetitive power measurements since the power use of sensing applications needs to be evaluated under various real-world usage scenarios and sensing parameters. PADA enables developers to obtain enriched power information under diverse usage scenarios in development environments without deploying and testing applications on real phones in real-life situations. We conducted two user studies with 19 developers to evaluate the usability of PADA. We show that developers benefit from using PADA in the implementation and power tuning of mobile sensing applications.
In international military coalitions, situation awareness is achieved by gathering critical intel from different authorities. Authorities want to retain control over their data, as they are sensitive by nature, and, thus, usually employ their own authorization solutions to regulate access to them. In this paper, we highlight that harmonizing authorization solutions at the coalition level raises many challenges. We demonstrate how we address authorization challenges in the context of a scenario defined by military experts using a prototype implementation of SAFAX, an XACML-based architectural framework tailored to the development of authorization services for distributed systems.
We propose a new security paradigm that makes cross-layer personalization a premier component in the design of security solutions for computer infrastructure and situational awareness. This paradigm is based on the observation that computer systems have a personalized usage profile that depends on the user and his activities. Further, it spans the various layers of abstraction that make up a computer system, as if the user embedded his own DNA into the computer system. To realize such a paradigm, we discuss the design of a comprehensive and cross-layer profiling approach, which can be adopted to boost the effectiveness of various security solutions, e.g., malware detection, insider attacker prevention and continuous authentication. The current state-of-the-art in computer infrastructure defense solutions focuses on one layer of operation with deployments coming in a "one size fits all" format, without taking into account the unique way people use their computers. The key novelty of our proposal is the cross-layer personalization, where we derive the distinguishable behaviors from the intelligence of three layers of abstraction. First, we combine intelligence from: a) the user layer, (e.g., mouse click patterns); b) the operating system layer; c) the network layer. Second, we develop cross-layer personalized profiles for system usage. We will limit our scope to companies and organizations, where computers are used in a more routine and one-on-one style, before we expand our research to personally owned computers. Our preliminary results show that just the time accesses in user web logs are already sufficient to distinguish users from each other,with users of the same demographics showing similarities in their profiles. Our goal is to challenge today's paradigm for anomaly detection that seems to follow a monoculture and treat each layer in isolation. We also discuss deployment, performance overhead, and privacy issues raised by our paradigm.
Recent advances in vehicle automation have led to excitement and discourse in academia, industry, the media, and the public. Human factors such as trust and user experience are critical in terms of safety and customer acceptance. One of the main challenges in partial and conditional automation is related to drivers' situational awareness, or a lack thereof. In this paper, we critically analyse state of the art implementations in this arena and present a proactive approach to increasing situational awareness. We propose to make use of augmented reality to carefully design applications aimed at constructs such as amplification and voluntary attention. Finally, we showcase an example application, Pokémon DRIVE, that illustrates the utility of our proposed approach.
Research towards my dissertation has involved a series of perceptual and accessibility-focused studies concerned with the use of tactile cues for spatial and situational awareness, displayed through head-mounted wearables. These studies were informed by an initial participatory design study of mobile technology multitasking and tactile interaction habits. This research has yielded a number of actionable conclusions regarding the development of tactile interfaces for the head, and endeavors to provide greater insight into the design of advanced tactile alerting for contextual and spatial understanding in assistive applications (e.g. for individuals who are blind or those encountering situational impairments), as well as guidance for developers regarding assessment of interaction between under-utilized sensory modalities and underlying perceptual and cognitive processes.
This paper describes the challenges of converting the classic Pac-Man arcade game into a virtual reality game. Arcaid provides players with the tools to maintain sufficient situation awareness in an environment where, unlike the classic game, they do not have full view of the game state. We also illustrate methods that can be used to reduce a player's simulation sickness by providing visual focal points for players and designing user interface elements that do not disrupt immersion.
Opportunistic Situation Identification (OSI) is new paradigms for situation-aware systems, in which contexts for situation identification are sensed through sensors that happen to be available rather than pre-deployed and application-specific ones. OSI extends the application usage scale and reduces system costs. However, designing and implementing OSI module of situation-aware systems encounters several challenges, including the uncertainty of context availability, vulnerable network connectivity and privacy threat. This paper proposes a novel middleware framework to tackle such challenges, and its intuition is that it facilitates performing the situation reasoning locally on a smartphone without needing to rely on the cloud, thus reducing the dependency on the network and being more privacy-preserving. To realize such intuitions, we propose a hybrid learning approach to maximize the reasoning accuracy using limited phone's storage space, with the combination of two the-state-the-art techniques. Specifically, this paper provides a genetic algorithm based optimization approach to determine which pre-computed models will be selected for storage under the storage constraints. Validation of the approach based on an open dataset indicates that the proposed approach achieves higher accuracy with comparatively small storage cost. Further, the proposed utility function for model selection performs better than three baseline utility functions.
The lack of qualification of a common operating picture (COP) directly impacts the situational awareness of military Command and Control (C2). Since a commander is reliant on situational awareness information in order to make decisions regarding military operations, the COP needs to be trustworthy and provide accurate information for the commander to base decisions on the resultant information. If the COP's integrity is questioned, there is no definite way of defining its integrity. This paper looks into the integrity of the COP and how it can impact situational awareness. It discusses a potential solution to this problem on which future research can be based.
The research question of this study is: How Integration Readiness Level (IRL) metrics can be understood and realized in the domain of border control information systems. The study address to the IRL metrics and their definition, criteria, references, and questionnaires for validation of border control information systems in case of the shared maritime situational awareness system. The target of study is in improvements of ways for acceptance, operational validation, risk assessment, and development of sharing mechanisms and integration of information systems and border control information interactions and collaboration concepts in Finnish national and European border control domains.