Visible to the public Biblio

Filters: Keyword is situational awareness  [Clear All Filters]
2015-05-05
Vellaithurai, C., Srivastava, A., Zonouz, S., Berthier, R..  2015.  CPIndex: Cyber-Physical Vulnerability Assessment for Power-Grid Infrastructures. Smart Grid, IEEE Transactions on. 6:566-575.

To protect complex power-grid control networks, power operators need efficient security assessment techniques that take into account both cyber side and the power side of the cyber-physical critical infrastructures. In this paper, we present CPINDEX, a security-oriented stochastic risk management technique that calculates cyber-physical security indices to measure the security level of the underlying cyber-physical setting. CPINDEX installs appropriate cyber-side instrumentation probes on individual host systems to dynamically capture and profile low-level system activities such as interprocess communications among operating system assets. CPINDEX uses the generated logs along with the topological information about the power network configuration to build stochastic Bayesian network models of the whole cyber-physical infrastructure and update them dynamically based on the current state of the underlying power system. Finally, CPINDEX implements belief propagation algorithms on the created stochastic models combined with a novel graph-theoretic power system indexing algorithm to calculate the cyber-physical index, i.e., to measure the security-level of the system's current cyber-physical state. The results of our experiments with actual attacks against a real-world power control network shows that CPINDEX, within few seconds, can efficiently compute the numerical indices during the attack that indicate the progressing malicious attack correctly.
 

Okathe, T., Heydari, S.S., Sood, V., El-khatib, K..  2014.  Unified multi-critical infrastructure communication architecture. Communications (QBSC), 2014 27th Biennial Symposium on. :178-183.

Recent events have brought to light the increasingly intertwined nature of modern infrastructures. As a result much effort is being put towards protecting these vital infrastructures without which modern society suffers dire consequences. These infrastructures, due to their intricate nature, behave in complex ways. Improving their resilience and understanding their behavior requires a collaborative effort between the private sector that operates these infrastructures and the government sector that regulates them. This collaboration in the form of information sharing requires a new type of information network whose goal is in two parts to enable infrastructure operators share status information among interdependent infrastructure nodes and also allow for the sharing of vital information concerning threats and other contingencies in the form of alerts. A communication model that meets these requirements while maintaining flexibility and scalability is presented in this paper.
 

Kornmaier, A., Jaouen, F..  2014.  Beyond technical data - a more comprehensive situational awareness fed by available intelligence information. Cyber Conflict (CyCon 2014), 2014 6th International Conference On. :139-154.

Information on cyber incidents and threats are currently collected and processed with a strong technical focus. Threat and vulnerability information alone are not a solid base for effective, affordable or actionable security advice for decision makers. They need more than a small technical cut of a bigger situational picture to combat and not only to mitigate the cyber threat. We first give a short overview over the related work that can be found in the literature. We found that the approaches mostly analysed “what” has been done, instead of looking more generically beyond the technical aspects for the tactics, techniques and procedures to identify the “how” it was done, by whom and why. We examine then, what information categories and data already exist to answer the question for an adversary's capabilities and objectives. As traditional intelligence tries to serve a better understanding of adversaries' capabilities, actions, and intent, the same is feasible in the cyber space with cyber intelligence. Thus, we identify information sources in the military and civil environment, before we propose to link that traditional information with the technical data for a better situational picture. We give examples of information that can be collected from traditional intelligence for correlation with technical data. Thus, the same intelligence operational picture for the cyber sphere could be developed like the one that is traditionally fed from conventional intelligence disciplines. Finally we propose a way of including intelligence processing in cyber analysis. We finally outline requirements that are key for a successful exchange of information and intelligence between military/civil information providers.
 

Cam, H., Mouallem, P., Yilin Mo, Sinopoli, B., Nkrumah, B..  2014.  Modeling impact of attacks, recovery, and attackability conditions for situational awareness. Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2014 IEEE International Inter-Disciplinary Conference on. :181-187.

A distributed cyber control system comprises various types of assets, including sensors, intrusion detection systems, scanners, controllers, and actuators. The modeling and analysis of these components usually require multi-disciplinary approaches. This paper presents a modeling and dynamic analysis of a distributed cyber control system for situational awareness by taking advantage of control theory and time Petri net. Linear time-invariant systems are used to model the target system, attacks, assets influences, and an anomaly-based intrusion detection system. Time Petri nets are used to model the impact and timing relationships of attacks, vulnerability, and recovery at every node. To characterize those distributed control systems that are perfectly attackable, algebraic and topological attackability conditions are derived. Numerical evaluation is performed to determine the impact of attacks on distributed control system.

Falcon, R., Abielmona, R., Billings, S., Plachkov, A., Abbass, H..  2014.  Risk management with hard-soft data fusion in maritime domain awareness. Computational Intelligence for Security and Defense Applications (CISDA), 2014 Seventh IEEE Symposium on. :1-8.

Enhanced situational awareness is integral to risk management and response evaluation. Dynamic systems that incorporate both hard and soft data sources allow for comprehensive situational frameworks which can supplement physical models with conceptual notions of risk. The processing of widely available semi-structured textual data sources can produce soft information that is readily consumable by such a framework. In this paper, we augment the situational awareness capabilities of a recently proposed risk management framework (RMF) with the incorporation of soft data. We illustrate the beneficial role of the hard-soft data fusion in the characterization and evaluation of potential vessels in distress within Maritime Domain Awareness (MDA) scenarios. Risk features pertaining to maritime vessels are defined a priori and then quantified in real time using both hard (e.g., Automatic Identification System, Douglas Sea Scale) as well as soft (e.g., historical records of worldwide maritime incidents) data sources. A risk-aware metric to quantify the effectiveness of the hard-soft fusion process is also proposed. Though illustrated with MDA scenarios, the proposed hard-soft fusion methodology within the RMF can be readily applied to other domains.
 

Linda, O., Wijayasekara, D., Manic, M., McQueen, M..  2014.  Optimal placement of Phasor Measurement Units in power grids using Memetic Algorithms. Industrial Electronics (ISIE), 2014 IEEE 23rd International Symposium on. :2035-2041.

Wide area monitoring, protection and control for power network systems are one of the fundamental components of the smart grid concept. Synchronized measurement technology such as the Phasor Measurement Units (PMUs) will play a major role in implementing these components and they have the potential to provide reliable and secure full system observability. The problem of Optimal Placement of PMUs (OPP) consists of locating a minimal set of power buses where the PMUs must be placed in order to provide full system observability. In this paper a novel solution to the OPP problem using a Memetic Algorithm (MA) is proposed. The implemented MA combines the global optimization power of genetic algorithms with local solution tuning using the hill-climbing method. The performance of the proposed approach was demonstrated on IEEE benchmark power networks as well as on a segment of the Idaho region power network. It was shown that the proposed solution using a MA features significantly faster convergence rate towards the optimum solution.
 

Boleng, J., Novakouski, M., Cahill, G., Simanta, S., Morris, E..  2014.  Fusing Open Source Intelligence and Handheld Situational Awareness: Benghazi Case Study. Military Communications Conference (MILCOM), 2014 IEEE. :1421-1426.

This paper reports the results and findings of a historical analysis of open source intelligence (OSINT) information (namely Twitter data) surrounding the events of the September 11, 2012 attack on the US Diplomatic mission in Benghazi, Libya. In addition to this historical analysis, two prototype capabilities were combined for a table top exercise to explore the effectiveness of using OSINT combined with a context aware handheld situational awareness framework and application to better inform potential responders as the events unfolded. Our experience shows that the ability to model sentiment, trends, and monitor keywords in streaming social media, coupled with the ability to share that information to edge operators can increase their ability to effectively respond to contingency operations as they unfold.
 

Zonouz, S., Davis, C.M., Davis, K.R., Berthier, R., Bobba, R.B., Sanders, W.H..  2014.  SOCCA: A Security-Oriented Cyber-Physical Contingency Analysis in Power Infrastructures. Smart Grid, IEEE Transactions on. 5:3-13.

Contingency analysis is a critical activity in the context of the power infrastructure because it provides a guide for resiliency and enables the grid to continue operating even in the case of failure. In this paper, we augment this concept by introducing SOCCA, a cyber-physical security evaluation technique to plan not only for accidental contingencies but also for malicious compromises. SOCCA presents a new unified formalism to model the cyber-physical system including interconnections among cyber and physical components. The cyber-physical contingency ranking technique employed by SOCCA assesses the potential impacts of events. Contingencies are ranked according to their impact as well as attack complexity. The results are valuable in both cyber and physical domains. From a physical perspective, SOCCA scores power system contingencies based on cyber network configuration, whereas from a cyber perspective, control network vulnerabilities are ranked according to the underlying power system topology.
 

Toshiro Yano, E., Bhatt, P., Gustavsson, P.M., Ahlfeldt, R.-M..  2014.  Towards a Methodology for Cybersecurity Risk Management Using Agents Paradigm. Intelligence and Security Informatics Conference (JISIC), 2014 IEEE Joint. :325-325.

In order to deal with shortcomings of security management systems, this work proposes a methodology based on agents paradigm for cybersecurity risk management. In this approach a system is decomposed in agents that may be used to attain goals established by attackers. Threats to business are achieved by attacker's goals in service and deployment agents. To support a proactive behavior, sensors linked to security mechanisms are analyzed accordingly with a model for Situational Awareness(SA)[4].
 

Prosser, B., Dawes, N., Fulp, E.W., McKinnon, A.D., Fink, G.A..  2014.  Using Set-Based Heading to Improve Mobile Agent Movement. Self-Adaptive and Self-Organizing Systems (SASO), 2014 IEEE Eighth International Conference on. :120-128.

Cover time measures the time (or number of steps) required for a mobile agent to visit each node in a network (graph) at least once. A short cover time is important for search or foraging applications that require mobile agents to quickly inspect or monitor nodes in a network, such as providing situational awareness or security. Speed can be achieved if details about the graph are known or if the agent maintains a history of visited nodes, however, these requirements may not be feasible for agents with limited resources, they are difficult in dynamic graph topologies, and they do not easily scale to large networks. This paper introduces a set-based form of heading (directional bias) that allows an agent to more efficiently explore any connected graph, static or dynamic. When deciding the next node to visit, agents are discouraged from visiting nodes that neighbor both their previous and current locations. Modifying a traditional movement method, e.g., random walk, with this concept encourages an agent to move toward nodes that are less likely to have been previously visited, reducing cover time. Simulation results with grid, scale-free, and minimum distance graphs demonstrate heading can consistently reduce cover time as compared to non-heading movement techniques.
 

Craig, R., Spyridopoulos, T., Tryfonas, T., May, J..  2014.  Soft systems methodology in net-centric cyber defence system development. Systems, Man and Cybernetics (SMC), 2014 IEEE International Conference on. :672-677.

Complexity is ever increasing within our information environment and organisations, as interdependent dynamic relationships within sociotechnical systems result in high variety and uncertainty from a lack of information or control. A net-centric approach is a strategy to improve information value, to enable stakeholders to extend their reach to additional data sources, share Situational Awareness (SA), synchronise effort and optimise resource use to deliver maximum (or proportionate) effect in support of goals. This paper takes a systems perspective to understand the dynamics within a net-centric information system. This paper presents the first stages of the Soft Systems Methodology (SSM), to develop a conceptual model of the human activity system and develop a system dynamics model to represent system behaviour, that will inform future research into a net-centric approach with information security. Our model supports the net-centric hypothesis that participation within a information sharing community extends information reach, improves organisation SA allowing proactive action to mitigate vulnerabilities and reduce overall risk within the community. The system dynamics model provides organisations with tools to better understand the value of a net-centric approach, a framework to determine their own maturity and evaluate strategic relationships with collaborative communities.
 

2015-05-01
Mohagheghi, S..  2014.  Integrity Assessment Scheme for Situational Awareness in Utility Automation Systems. Smart Grid, IEEE Transactions on. 5:592-601.

Today's more reliable communication technology, together with the availability of higher computational power, have paved the way for introduction of more advanced automation systems based on distributed intelligence and multi-agent technology. However, abundance of data, while making these systems more powerful, can at the same time act as their biggest vulnerability. In a web of interconnected devices and components functioning within an automation framework, potential impact of malfunction in a single device, either through internal failure or external damage/intrusion, may lead to detrimental side-effects spread across the whole underlying system. The potentially large number of devices, along with their inherent interrelations and interdependencies, may hinder the ability of human operators to interpret events, identify their scope of impact and take remedial actions if necessary. Through utilization of the concepts of graph-theoretic fuzzy cognitive maps (FCM) and expert systems, this paper puts forth a solution that is able to reveal weak links and vulnerabilities of an automation system, should it become exposed to partial internal failure or external damage. A case study has been performed on the IEEE 34-bus test distribution system to show the efficiency of the proposed scheme.

Shipman, C.M., Hopkinson, K.M., Lopez, J..  2015.  Con-Resistant Trust for Improved Reliability in a Smart-Grid Special Protection System. Power Delivery, IEEE Transactions on. 30:455-462.

This paper applies a con-resistant trust mechanism to improve the performance of a communications-based special protection system to enhance its effectiveness and resiliency. Smart grids incorporate modern information technologies to increase reliability and efficiency through better situational awareness. However, with the benefits of this new technology come the added risks associated with threats and vulnerabilities to the technology and to the critical infrastructure it supports. The research in this paper uses con-resistant trust to quickly identify malicious or malfunctioning (untrustworthy) protection system nodes to mitigate instabilities. The con-resistant trust mechanism allows protection system nodes to make trust assessments based on the node's cooperative and defective behaviors. These behaviors are observed via frequency readings which are prediodically reported. The trust architecture is tested in experiments by comparing a simulated special protection system with a con-resistant trust mechanism to one without the mechanism via an analysis of the variance statistical model. Simulation results show promise for the proposed con-resistant trust mechanism.

Zonouz, S., Davis, C.M., Davis, K.R., Berthier, R., Bobba, R.B., Sanders, W.H..  2014.  SOCCA: A Security-Oriented Cyber-Physical Contingency Analysis in Power Infrastructures. Smart Grid, IEEE Transactions on. 5:3-13.

Contingency analysis is a critical activity in the context of the power infrastructure because it provides a guide for resiliency and enables the grid to continue operating even in the case of failure. In this paper, we augment this concept by introducing SOCCA, a cyber-physical security evaluation technique to plan not only for accidental contingencies but also for malicious compromises. SOCCA presents a new unified formalism to model the cyber-physical system including interconnections among cyber and physical components. The cyber-physical contingency ranking technique employed by SOCCA assesses the potential impacts of events. Contingencies are ranked according to their impact as well as attack complexity. The results are valuable in both cyber and physical domains. From a physical perspective, SOCCA scores power system contingencies based on cyber network configuration, whereas from a cyber perspective, control network vulnerabilities are ranked according to the underlying power system topology.

2015-04-30
Cam, H., Mouallem, P., Yilin Mo, Sinopoli, B., Nkrumah, B..  2014.  Modeling impact of attacks, recovery, and attackability conditions for situational awareness. Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2014 IEEE International Inter-Disciplinary Conference on. :181-187.

A distributed cyber control system comprises various types of assets, including sensors, intrusion detection systems, scanners, controllers, and actuators. The modeling and analysis of these components usually require multi-disciplinary approaches. This paper presents a modeling and dynamic analysis of a distributed cyber control system for situational awareness by taking advantage of control theory and time Petri net. Linear time-invariant systems are used to model the target system, attacks, assets influences, and an anomaly-based intrusion detection system. Time Petri nets are used to model the impact and timing relationships of attacks, vulnerability, and recovery at every node. To characterize those distributed control systems that are perfectly attackable, algebraic and topological attackability conditions are derived. Numerical evaluation is performed to determine the impact of attacks on distributed control system.