Visible to the public Biblio

Found 153 results

Filters: Keyword is power grids  [Clear All Filters]
2019-05-01
Konstantelos, I., Jamgotchian, G., Tindemans, S., Duchesne, P., Cole, S., Merckx, C., Strbac, G., Panciatici, P..  2018.  Implementation of a Massively Parallel Dynamic Security Assessment Platform for Large-Scale Grids. 2018 IEEE Power Energy Society General Meeting (PESGM). :1–1.

This paper presents a computational platform for dynamic security assessment (DSA) of large electricity grids, developed as part of the iTesla project. It leverages High Performance Computing (HPC) to analyze large power systems, with many scenarios and possible contingencies, thus paving the way for pan-European operational stability analysis. The results of the DSA are summarized by decision trees of 11 stability indicators. The platform's workflow and parallel implementation architecture is described in detail, including the way commercial tools are integrated into a plug-in architecture. A case study of the French grid is presented, with over 8000 scenarios and 1980 contingencies. Performance data of the case study (using 10,000 parallel cores) is analyzed, including task timings and data flows. Finally, the generated decision trees are compared with test data to quantify the functional performance of the DSA platform.

2019-04-05
Shu, H., Shen, X., Xu, L., Guo, Q., Sun, H..  2018.  A Validity Test Methodfor Transmission Betweens and Transmission Sections Based on Chain Attack Analysisand Line Outage Distribution Factors. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1-6.

The identification of transmission sections is used to improve the efficiency of monitoring the operation of the power grid. In order to test the validity of transmission sections identified, an assessment process is necessary. In addition, Transmission betweenness, an index for finding the key transmission lines in the power grid, should also be verified. In this paper, chain attack is assumed to check the weak links in the grid, thus verifying the transmission betweenness implemented for the system. Moreover, the line outage distribution factors (LODFs) are used to quantify the change of power flow when the leading line in transmission sections breaks down, so that the validity of transmission sections can be proved. Case studies based on IEEE 39 and IEEE 118 -bus system proved the effectiveness of the proposed method.

2019-03-25
Pournaras, E., Ballandies, M., Acharya, D., Thapa, M., Brandt, B..  2018.  Prototyping Self-Managed Interdependent Networks - Self-Healing Synergies against Cascading Failures. 2018 IEEE/ACM 13th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). :119–129.
The interconnection of networks between several techno-socio-economic sectors such as energy, transport, and communication, questions the manageability and resilience of the digital society. System interdependencies alter the fundamental dynamics that govern isolated systems, which can unexpectedly trigger catastrophic instabilities such as cascading failures. This paper envisions a general-purpose, yet simple prototyping of self-management software systems that can turn system interdependencies from a cause of instability to an opportunity for higher resilience. Such prototyping proves to be challenging given the highly interdisciplinary scope of interdependent networks. Different system dynamics and organizational constraints such as the distributed nature of interdependent networks or the autonomy and authority of system operators over their controlled infrastructure perplex the design for a general prototyping approach, which earlier work has not yet addressed. This paper contributes such a modular design solution implemented as an open source software extension of SFINA, the Simulation Framework for Intelligent Network Adaptations. The applicability of the software artifact is demonstrated with the introduction of a novel self-healing mechanism for interdependent power networks, which optimizes power flow exchanges between a damaged and a healer network to mitigate power cascading failures. Results show a significant decrease in the damage spread by self-healing synergies, while the degree of interconnectivity between the power networks indicates a tradeoff between links survivability and load served. The contributions of this paper aspire to bring closer several research communities working on modeling and simulation of different domains with an economic and societal impact on the resilience of real-world interdependent networks.
2019-03-04
Berscheid, A., Makarov, Y., Hou, Z., Diao, R., Zhang, Y., Samaan, N., Yuan, Y., Zhou, H..  2018.  An Open-Source Tool for Automated Power Grid Stress Level Prediction at Balancing Authorities. 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T D). :1–5.
The behavior of modern power systems is becoming more stochastic and dynamic, due to the increased penetration of variable generation, demand response, new power market structure, extreme weather conditions, contingencies, and unexpected events. It is critically important to predict potential system operational issues so that grid planners and operators can take preventive actions to mitigate the impact, e.g., lack of operational reserves. In this paper, an innovative software tool is presented to assist power grid operators in a balancing authority in predicting the grid stress level over the next operating day. It periodically collects necessary information from public domain such as weather forecasts, electricity demand, and automatically estimates the stress levels on a daily basis. Advanced Neural Network and regression tree algorithms are developed as the prediction engines to achieve this goal. The tool has been tested on a few key balancing authorities and successfully predicted the growing system peak load and increased stress levels under extreme heat waves.
2018-05-24
Ding, P., Wang, Y., Yan, G., Li, W..  2017.  DoS Attacks in Electrical Cyber-Physical Systems: A Case Study Using TrueTime Simulation Tool. 2017 Chinese Automation Congress (CAC). :6392–6396.

Recent years, the issue of cyber security has become ever more prevalent in the analysis and design of electrical cyber-physical systems (ECPSs). In this paper, we present the TrueTime Network Library for modeling the framework of ECPSs and focuses on the vulnerability analysis of ECPSs under DoS attacks. Model predictive control algorithm is used to control the ECPS under disturbance or attacks. The performance of decentralized and distributed control strategies are compared on the simulation platform. It has been proved that DoS attacks happen at dada collecting sensors or control instructions actuators will influence the system differently.

Zhang, T., Wang, Y., Liang, X., Zhuang, Z., Xu, W..  2017.  Cyber Attacks in Cyber-Physical Power Systems: A Case Study with GPRS-Based SCADA Systems. 2017 29th Chinese Control And Decision Conference (CCDC). :6847–6852.

With the integration of computing, communication, and physical processes, the modern power grid is becoming a large and complex cyber physical power system (CPPS). This trend is intended to modernize and improve the efficiency of the power grid, yet it makes the CPPS vulnerable to potential cascading failures caused by cyber-attacks, e.g., the attacks that are originated by the cyber network of CPPS. To prevent these risks, it is essential to analyze how cyber-attacks can be conducted against the CPPS and how they can affect the power systems. In light of that General Packet Radio Service (GPRS) has been widely used in CPPS, this paper provides a case study by examining possible cyber-attacks against the cyber-physical power systems with GPRS-based SCADA system. We analyze the vulnerabilities of GPRS-based SCADA systems and focus on DoS attacks and message spoofing attacks. Furthermore, we show the consequence of these attacks against power systems by a simulation using the IEEE 9-node system, and the results show the validity of cascading failures propagated through the systems under our proposed attacks.

Huang, P., Wang, Y., Yan, G..  2017.  Vulnerability Analysis of Electrical Cyber Physical Systems Using a Simulation Platform. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :489–494.

This paper considers a framework of electrical cyber-physical systems (ECPSs) in which each bus and branch in a power grid is equipped with a controller and a sensor. By means of measuring the damages of cyber attacks in terms of cutting off transmission lines, three solution approaches are proposed to assess and deal with the damages caused by faults or cyber attacks. Splitting incident is treated as a special situation in cascading failure propagation. A new simulation platform is built for simulating the protection procedure of ECPSs under faults. The vulnerability of ECPSs under faults is analyzed by experimental results based on IEEE 39-bus system.

Chen, L., Yue, D., Dou, C., Ge, H., Lu, J., Yang, X..  2017.  Cascading Failure Initially from Power Grid in Interdependent Networks. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). :1–5.

The previous consideration of power grid focuses on the power system itself, however, the recent work is aiming at both power grid and communication network, this coupling networks are firstly called as interdependent networks. Prior study on modeling interdependent networks always extracts main features from real networks, the model of network A and network B are completely symmetrical, both degree distribution in intranetwork and support pattern in inter-network, but in reality this circumstance is hard to attain. In this paper, we deliberately set both networks with same topology in order to specialized research the support pattern between networks. In terms of initial failure from power grid or communication network, we find the remaining survival fraction is greatly disparate, and the failure initially from power grid is more harmful than failure initially from communication network, which all show the vulnerability of interdependency and meantime guide us to pay more attention to the protection measures for power grid.

Dey, A. K., Gel, Y. R., Poor, H. V..  2017.  Motif-Based Analysis of Power Grid Robustness under Attacks. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :1015–1019.

Network motifs are often called the building blocks of networks. Analysis of motifs is found to be an indispensable tool for understanding local network structure, in contrast to measures based on node degree distribution and its functions that primarily address a global network topology. As a result, networks that are similar in terms of global topological properties may differ noticeably at a local level. In the context of power grids, this phenomenon of the impact of local structure has been recently documented in fragility analysis and power system classification. At the same time, most studies of power system networks still tend to focus on global topo-logical measures of power grids, often failing to unveil hidden mechanisms behind vulnerability of real power systems and their dynamic response to malfunctions. In this paper a pilot study of motif-based analysis of power grid robustness under various types of intentional attacks is presented, with the goal of shedding light on local dynamics and vulnerability of power systems.

2018-05-09
Salles-Loustau, G., Garcia, L., Sun, P., Dehnavi, M., Zonouz, S..  2017.  Power Grid Safety Control via Fine-Grained Multi-Persona Programmable Logic Controllers. 2017 IEEE International Conference on Smart Grid Communications (SmartGridComm). :283–288.

Trustworthy and safe operation of the power grid critical infrastructures relies on secure execution of low-level substation controller devices such as programmable logic controllers (PLCs). Currently, there are very few security protection solutions deployed on these devices to ensure provenance control: to execute controller code on the device that is developed by trusted parties and complies with safety/security policies that are defined by the code developer as well as the power grid operators. Resource-limited PLC controllers have been becoming increasingly popular among not only legitimate system operators, but also malicious adversaries such as the most recent Stuxnet and BlackEnergy malware that caused various damages such as unauthorized infrastructural safety and integrity violations. We present PLCtrust, a domain-specific solution that deploys virtual micro security-perimeters, so-called capsules, and the corresponding device-level runtime power system-safety policy enforcement dynamically. PLCtrust makes use of data taint analysis to monitor and control data flow among the capsules based on data owner-defined policies. PLCtrust provides the operators with a transparent and lightweight solution to address various safety-critical data protection requirements. PLCtrust also provides the legitimate third-party controller code developers with a taint-aware programming interface to develop applications in compliance with the dynamic power system safety/security policies. Our experimental results on real-world settings show that PLCtrust is transparent to the end-users while ensuring the power grid safety maintenance with minimal performance overhead.

Zhao, Zhiqiang, Feng, Z..  2017.  A Spectral Graph Sparsification Approach to Scalable Vectorless Power Grid Integrity Verification. 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). :1–6.

Vectorless integrity verification is becoming increasingly critical to robust design of nanoscale power delivery networks (PDNs). To dramatically improve efficiency and capability of vectorless integrity verifications, this paper introduces a scalable multilevel integrity verification framework by leveraging a hierarchy of almost linear-sized spectral power grid sparsifiers that can well retain effective resistances between nodes, as well as a recent graph-theoretic algebraic multigrid (AMG) algorithmic framework. As a result, vectorless integrity verification solution obtained on coarse level problems can effectively help find the solution of the original problem. Extensive experimental results show that the proposed vectorless verification framework can always efficiently and accurately obtain worst-case scenarios in even very large power grid designs.

2018-04-02
Wang, Y., Pulgar-Painemal, H., Sun, K..  2017.  Online Analysis of Voltage Security in a Microgrid Using Convolutional Neural Networks. 2017 IEEE Power Energy Society General Meeting. :1–5.

Although connecting a microgrid to modern power systems can alleviate issues arising from a large penetration of distributed generation, it can also cause severe voltage instability problems. This paper presents an online method to analyze voltage security in a microgrid using convolutional neural networks. To transform the traditional voltage stability problem into a classification problem, three steps are considered: 1) creating data sets using offline simulation results; 2) training the model with dimensional reduction and convolutional neural networks; 3) testing the online data set and evaluating performance. A case study in the modified IEEE 14-bus system shows the accuracy of the proposed analysis method increases by 6% compared to back-propagation neural network and has better performance than decision tree and support vector machine. The proposed algorithm has great potential in future applications.

2018-03-19
Soltan, S., Zussman, G..  2017.  Power Grid State Estimation after a Cyber-Physical Attack under the AC Power Flow Model. 2017 IEEE Power Energy Society General Meeting. :1–5.

In this paper, we present an algorithm for estimating the state of the power grid following a cyber-physical attack. We assume that an adversary attacks an area by: (i) disconnecting some lines within that area (failed lines), and (ii) obstructing the information from within the area to reach the control center. Given the phase angles of the buses outside the attacked area under the AC power flow model (before and after the attack), the algorithm estimates the phase angles of the buses and detects the failed lines inside the attacked area. The novelty of our approach is the transformation of the line failures detection problem, which is combinatorial in nature, to a convex optimization problem. As a result, our algorithm can detect any number of line failures in a running time that is independent of the number of failures and is solely dependent on the size of the network. To the best of our knowledge, this is the first convex relaxation for the problem of line failures detection using phase angle measurements under the AC power flow model. We evaluate the performance of our algorithm in the IEEE 118- and 300-bus systems, and show that it estimates the phase angles of the buses with less that 1% error, and can detect the line failures with 80% accuracy for single, double, and triple line failures.

Kamdem, G., Kamhoua, C., Lu, Y., Shetty, S., Njilla, L..  2017.  A Markov Game Theoritic Approach for Power Grid Security. 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW). :139–144.

The extensive use of information and communication technologies in power grid systems make them vulnerable to cyber-attacks. One class of cyber-attack is advanced persistent threats where highly skilled attackers can steal user authentication information's and then move laterally in the network, from host to host in a hidden manner, until they reach an attractive target. Once the presence of the attacker has been detected in the network, appropriate actions should be taken quickly to prevent the attacker going deeper. This paper presents a game theoretic approach to optimize the defense against an invader attempting to use a set of known vulnerabilities to reach critical nodes in the network. First, the network is modeled as a vulnerability multi-graph where the nodes represent physical hosts and edges the vulnerabilities that the attacker can exploit to move laterally from one host to another. Secondly, a two-player zero-sum Markov game is built where the states of the game represent the nodes of the vulnerability multi-graph graph and transitions correspond to the edge vulnerabilities that the attacker can exploit. The solution of the game gives the optimal strategy to disconnect vulnerable services and thus slow down the attack.

2018-03-05
Shelar, D., Sun, P., Amin, S., Zonouz, S..  2017.  Compromising Security of Economic Dispatch in Power System Operations. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :531–542.

Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.

Shelar, D., Sun, P., Amin, S., Zonouz, S..  2017.  Compromising Security of Economic Dispatch in Power System Operations. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :531–542.

Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.

Shelar, D., Sun, P., Amin, S., Zonouz, S..  2017.  Compromising Security of Economic Dispatch in Power System Operations. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :531–542.
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.
2018-02-27
Huang, L., Chen, J., Zhu, Q..  2017.  A Factored MDP Approach to Optimal Mechanism Design for Resilient Large-Scale Interdependent Critical Infrastructures. 2017 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.

Enhancing the security and resilience of interdependent infrastructures is crucial. In this paper, we establish a theoretical framework based on Markov decision processes (MDPs) to design optimal resiliency mechanisms for interdependent infrastructures. We use MDPs to capture the dynamics of the failure of constituent components of an infrastructure and their cyber-physical dependencies. Factored MDPs and approximate linear programming are adopted for an exponentially growing dimension of both state and action spaces. Under our approximation scheme, the optimally distributed policy is equivalent to the centralized one. Finally, case studies in a large-scale interdependent system demonstrate the effectiveness of the control strategy to enhance the network resilience to cascading failures.

2018-02-21
Foreman, J. C., Pacheco, F. E..  2017.  Aggregation architecture for data reduction and privacy in advanced metering infrastructure. 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1–5.

Advanced Metering Infrastructure (AMI) have rapidly become a topic of international interest as governments have sponsored their deployment for the purposes of utility service reliability and efficiency, e.g., water and electricity conservation. Two problems plague such deployments. First is the protection of consumer privacy. Second is the problem of huge amounts of data from such deployments. A new architecture is proposed to address these problems through the use of Aggregators, which incorporate temporary data buffering and the modularization of utility grid analysis. These Aggregators are used to deliver anonymized summary data to the central utility while preserving billing and automated connection services.

2018-02-15
Wang, M., Qu, Z., He, X., Li, T., Jin, X., Gao, Z., Zhou, Z., Jiang, F., Li, J..  2017.  Real time fault monitoring and diagnosis method for power grid monitoring and its application. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). :1–6.

In Energy Internet mode, a large number of alarm information is generated when equipment exception and multiple faults in large power grid, which seriously affects the information collection, fault analysis and delays the accident treatment for the monitors. To this point, this paper proposed a method for power grid monitoring to monitor and diagnose fault in real time, constructed the equipment fault logical model based on five section alarm information, built the standard fault information set, realized fault information optimization, fault equipment location, fault type diagnosis, false-report message and missing-report message analysis using matching algorithm. The validity and practicality of the proposed method by an actual case was verified, which can shorten the time of obtaining and analyzing fault information, accelerate the progress of accident treatment, ensure the safe and stable operation of power grid.

2018-02-06
Ashok, A., Sridhar, S., Rice, M., Smith, J..  2017.  Substation Monitoring to Enhance Situational Awareness \#x2014; Challenges and Opportunities. 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Situational awareness during sophisticated cyber attacks on the power grid is critical for the system operator to perform suitable attack response and recovery functions to ensure grid reliability. The overall theme of this paper is to identify existing practical issues and challenges that utilities face while monitoring substations, and to suggest potential approaches to enhance the situational awareness for the grid operators. In this paper, we provide a broad discussion about the various gaps that exist in the utility industry today in monitoring substations, and how those gaps could be addressed by identifying the various data sources and monitoring tools to improve situational awareness. The paper also briefly describes the advantages of contextualizing and correlating substation monitoring alerts using expert systems at the control center to obtain a holistic systems-level view of potentially malicious cyber activity at the substations before they cause impacts to grid operation.

Gavgani, M. H., Eftekharnejad, S..  2017.  A Graph Model for Enhancing Situational Awareness in Power Systems. 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP). :1–6.

As societies are becoming more dependent on the power grids, the security issues and blackout threats are more emphasized. This paper proposes a new graph model for online visualization and assessment of power grid security. The proposed model integrates topology and power flow information to estimate and visualize interdependencies between the lines in the form of line dependency graph (LDG) and immediate threats graph (ITG). These models enable the system operator to predict the impact of line outage and identify the most vulnerable and critical links in the power system. Line Vulnerability Index (LVI) and Line Criticality Index (LCI) are introduced as two indices extracted from LDG to aid the operator in decision making and contingency selection. This package can be useful in enhancing situational awareness in power grid operation by visualization and estimation of system threats. The proposed approach is tested for security analysis of IEEE 30-bus and IEEE 118-bus systems and the results are discussed.

2018-02-02
Ashok, A., Sridhar, S., McKinnon, A. D., Wang, P., Govindarasu, M..  2016.  Testbed-based performance evaluation of Attack Resilient Control for AGC. 2016 Resilience Week (RWS). :125–129.

The modern electric power grid is a complex cyber-physical system whose reliable operation is enabled by a wide-area monitoring and control infrastructure. Recent events have shown that vulnerabilities in this infrastructure may be exploited to manipulate the data being exchanged. Such a scenario could cause the associated control applications to mis-operate, potentially causing system-wide instabilities. There is a growing emphasis on looking beyond traditional cybersecurity solutions to mitigate such threats. In this paper we perform a testbed-based validation of one such solution - Attack Resilient Control (ARC) - on Iowa State University's PowerCyber testbed. ARC is a cyber-physical security solution that combines domain-specific anomaly detection and model-based mitigation to detect stealthy attacks on Automatic Generation Control (AGC). In this paper, we first describe the implementation architecture of the experiment on the testbed. Next, we demonstrate the capability of stealthy attack templates to cause forced under-frequency load shedding in a 3-area test system. We then validate the performance of ARC by measuring its ability to detect and mitigate these attacks. Our results reveal that ARC is efficient in detecting stealthy attacks and enables AGC to maintain system operating frequency close to its nominal value during an attack. Our studies also highlight the importance of testbed-based experimentation for evaluating the performance of cyber-physical security and control applications.

2018-01-23
Hu, X., Tang, W., Liu, H., Zhang, D., Lian, S., He, Y..  2017.  Construction of bulk power grid security defense system under the background of AC/DC hybrid EHV transmission system and new energy. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :5713–5719.

With the rapid development of bulk power grid under extra-high voltage (EHV) AC/DC hybrid power system and extensive access of distributed energy resources (DER), operation characteristics of power grid have become increasingly complicated. To cope with new severe challenges faced by safe operation of interconnected bulk power grids, an in-depth analysis of bulk power grid security defense system under the background of EHV and new energy resources was implemented from aspects of management and technology in this paper. Supported by big data and cloud computing, bulk power grid security defense system was divided into two parts: one is the prevention and control of operation risks. Power grid risks are eliminated and influence of random faults is reduced through measures such as network planning, power-cut scheme, risk pre-warning, equipment status monitoring, voltage control, frequency control and adjustment of operating mode. The other is the fault recovery control. By updating “three defense lines”, intelligent relay protection is used to deal with the challenges brought by EHV AC/DC hybrid grid and new energy resources. And then security defense system featured by passive defense is promoted to active type power grid security defense system.

2018-01-16
Ulrich, J., Drahos, J., Govindarasu, M..  2017.  A symmetric address translation approach for a network layer moving target defense to secure power grid networks. 2017 Resilience Week (RWS). :163–169.

This paper will suggest a robust method for a network layer Moving Target Defense (MTD) using symmetric packet scheduling rules. The MTD is implemented and tested on a Supervisory Control and Data Acquisition (SCADA) network testbed. This method is shown to be efficient while providing security benefits to the issues faced by the static nature of SCADA networks. The proposed method is an automated tool that may provide defense in depth when be used in conjunction with other MTDs and traditional security devices.