Biblio
This paper exploits the possibility of exposing the location of active eavesdropper in commodity passive RFID system. Such active eavesdropper can activate the commodity passive RFID tags to achieve data eavesdropping and jamming. In this paper, we show that these active eavesdroppers can be significantly detrimental to the commodity passive RFID system on RFID data security and system feasibility. We believe that the best way to defeat the active eavesdropper in the commodity passive RFID system is to expose the location of the active eavesdropper and kick it out. To do so, we need to localize the active eavesdropper. However, we cannot extract the channel from the active eavesdropper, since we do not know what the active eavesdropper's transmission and the interference from the tag's backscattered signals. So, we propose an approach to mitigate the tag's interference and cancel out the active eavesdropper's transmission to obtain the subtraction-and-division features, which will be used as the input of the machine learning model to predict the location of active eavesdropper. Our preliminary results show the average accuracy of 96% for predicting the active eavesdropper's position in four grids of the surveillance plane.
The use of Automatic Dependent Surveillance - Broadcast (ADS-B) for aircraft tracking and flight management operations is widely used today. However, ADS-B is prone to several cyber-security threats due to the lack of data authentication and encryption. Recently, Blockchain has emerged as new paradigm that can provide promising solutions in decentralized systems. Furthermore, software containers and Microservices facilitate the scaling of Blockchain implementations within cloud computing environment. When fused together, these technologies could help improve Air Traffic Control (ATC) processing of ADS-B data. In this paper, a Blockchain implementation within a Microservices framework for ADS-B data verification is proposed. The aim of this work is to enable data feeds coming from third-party receivers to be processed and correlated with that of the ATC ground station receivers. The proposed framework could mitigate ADS- B security issues of message spoofing and anomalous traffic data. and hence minimize the cost of ATC infrastructure by throughout third-party support.
Blockchain technology is a decentralized ledger of all transactions across peer to peer network. Being decentralized in nature, a blockchain is highly secure as no single user can alter or remove an entry in the blockchain. The security of office premises and data is a very major concern for any organization. This paper majorly focuses on its application of blockchain technology in security surveillance. This paper proposes a blockchain based multi level network model for security surveillance system. The proposed system architecture is composed of different blockchain based systems connected to a multi level decentralized blockchain system to insure authentication, secure storage, Integrity and accountability.
Monitoring for security and well-being in highly populated areas is a critical issue for city administrators, policy makers and urban planners. As an essential part of many dynamic and critical data-driven tasks, situational awareness (SAW) provides decision-makers a deeper insight of the meaning of urban surveillance. Thus, surveillance measures are increasingly needed. However, traditional surveillance platforms are not scalable when more cameras are added to the network. In this work, a smart surveillance as an edge service has been proposed. To accomplish the object detection, identification, and tracking tasks at the edge-fog layers, two novel lightweight algorithms are proposed for detection and tracking respectively. A prototype has been built to validate the feasibility of the idea, and the test results are very encouraging.
The automatic face tracking and detection has been one of the fastest developing areas due to its wide range of application, security and surveillance application in particular. It has been one of the most interest subjects, which suppose but yet to be wholly explored in various research areas due to various distinctive factors: varying ethnic groups, sizes, orientations, poses, occlusions and lighting conditions. The focus of this paper is to propose an improve algorithm to speed up the face tracking and detection process with the simple and efficient proposed novel edge detector to reject the non-face-likes regions, hence reduce the false detection rate in an automatic face tracking and detection in still images with multiple faces for facial expression system. The correct rates of 95.9% on the Haar face detection and proposed novel edge detector, which is higher 6.1% than the primitive integration of Haar and canny edge detector.
Recently, smart video security systems have been active. The existing video security system is mainly a method of detecting a local abnormality of a unit camera. In this case, it is difficult to obtain the characteristics of each local region and the situation for the entire watching area. In this paper, we developed an object map for the entire surveillance area using a combination of surveillance cameras, and developed an algorithm to detect anomalies by learning normal situations. The surveillance camera in each area detects and tracks people and cars, and creates a local object map and transmits it to the server. The surveillance server combines each local maps to generate a global map for entire areas. Probability maps were automatically calculated from the global maps, and normal and abnormal decisions were performed through trained data about normal situations. For three reporting status: normal, caution, and warning, and the caution report performance shows that normal detection 99.99% and abnormal detection 86.6%.
Robots are becoming more and more prevalent in many real world scenarios. Housekeeping, medical aid, human assistance are a few common implementations of robots. Military and Security are also major areas where robotics is being researched and implemented. Robots with the purpose of surveillance in war zones and terrorist scenarios need specific functionalities to perform their tasks with precision and efficiency. In this paper, we present a model of Military Surveillance Robot developed using Robot Operating System. The map generation based on Kinect sensor is presented and some test case scenarios are discussed with results.