Visible to the public Biblio

Filters: Keyword is Upper bound  [Clear All Filters]
2023-09-01
Cheng, Wei, Liu, Yi, Guilley, Sylvain, Rioul, Olivier.  2022.  Attacking Masked Cryptographic Implementations: Information-Theoretic Bounds. 2022 IEEE International Symposium on Information Theory (ISIT). :654—659.
Measuring the information leakage is critical for evaluating the practical security of cryptographic devices against side-channel analysis. Information-theoretic measures can be used (along with Fano’s inequality) to derive upper bounds on the success rate of any possible attack in terms of the number of side-channel measurements. Equivalently, this gives lower bounds on the number of queries for a given success probability of attack. In this paper, we consider cryptographic implementations protected by (first-order) masking schemes, and derive several information-theoretic bounds on the efficiency of any (second-order) attack. The obtained bounds are generic in that they do not depend on a specific attack but only on the leakage and masking models, through the mutual information between side-channel measurements and the secret key. Numerical evaluations confirm that our bounds reflect the practical performance of optimal maximum likelihood attacks.
Gu, Yujie, Akao, Sonata, Esfahani, Navid Nasr, Miao, Ying, Sakurai, Kouichi.  2022.  On the Security Properties of Combinatorial All-or-nothing Transforms. 2022 IEEE International Symposium on Information Theory (ISIT). :1447—1452.
All-or-nothing transforms (AONT) were proposed by Rivest as a message preprocessing technique for encrypting data to protect against brute-force attacks, and have many applications in cryptography and information security. Later the unconditionally secure AONT and their combinatorial characterization were introduced by Stinson. Informally, a combinatorial AONT is an array with the unbiased requirements and its security properties in general depend on the prior probability distribution on the inputs s-tuples. Recently, it was shown by Esfahani and Stinson that a combinatorial AONT has perfect security provided that all the inputs s-tuples are equiprobable, and has weak security provided that all the inputs s-tuples are with non-zero probability. This paper aims to explore on the gap between perfect security and weak security for combinatorial (t, s, v)-AONTs. Concretely, we consider the typical scenario that all the s inputs take values independently (but not necessarily identically) and quantify the amount of information H(\textbackslashmathcalX\textbackslashmid \textbackslashmathcalY) about any t inputs \textbackslashmathcalX that is not revealed by any s−t outputs \textbackslashmathcalY. In particular, we establish the general lower and upper bounds on H(\textbackslashmathcalX\textbackslashmid \textbackslashmathcalY) for combinatorial AONTs using information-theoretic techniques, and also show that the derived bounds can be attained in certain cases.
2023-04-28
Wang, Yiwen, Liang, Jifan, Ma, Xiao.  2022.  Local Constraint-Based Ordered Statistics Decoding for Short Block Codes. 2022 IEEE Information Theory Workshop (ITW). :107–112.
In this paper, we propose a new ordered statistics decoding (OSD) for linear block codes, which is referred to as local constraint-based OSD (LC-OSD). Distinguished from the conventional OSD, which chooses the most reliable basis (MRB) for re-encoding, the LC-OSD chooses an extended MRB on which local constraints are naturally imposed. A list of candidate codewords is then generated by performing a serial list Viterbi algorithm (SLVA) over the trellis specified with the local constraints. To terminate early the SLVA for complexity reduction, we present a simple criterion which monitors the ratio of the bound on the likelihood of the unexplored candidate codewords to the sum of the hard-decision vector’s likelihood and the up-to-date optimal candidate’s likelihood. Simulation results show that the LC-OSD can have a much less number of test patterns than that of the conventional OSD but cause negligible performance loss. Comparisons with other complexity-reduced OSDs are also conducted, showing the advantages of the LC-OSD in terms of complexity.
Khodeir, Mahmoud A., Alrayahneh, Wesam S..  2022.  Physical-Layer Security in Underlay Cognitive Radio System with Full-Duplex Secondary User over Nakagami-m Fading Channel. 2022 13th International Conference on Information and Communication Systems (ICICS). :495–501.
In this paper, we study an underlay Cognitive Radio (CR) system with energy harvesting over Nakagami-m fading channel. This system consists of a secondary source, a secondary receiver, a primary receiver and a single eavesdropper. The source in the secondary network has one antenna and transmits information to the secondary receiver equipped with two separated antennas to operate in a Full-Duplex (FD) mode. The upper and lower bounds for the Strictly Positive Secrecy Capacity (SPSC) are derived and the numerical results demonstrate that the performance of the proposed system can be improved by increasing the average channel power gain between the source and the destination. Here, the lower and upper bounds are merged to form the exact SPSC when the total interference is below a predefined limit.
2023-01-06
Golatkar, Aditya, Achille, Alessandro, Wang, Yu-Xiang, Roth, Aaron, Kearns, Michael, Soatto, Stefano.  2022.  Mixed Differential Privacy in Computer Vision. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :8366—8376.
We introduce AdaMix, an adaptive differentially private algorithm for training deep neural network classifiers using both private and public image data. While pre-training language models on large public datasets has enabled strong differential privacy (DP) guarantees with minor loss of accuracy, a similar practice yields punishing trade-offs in vision tasks. A few-shot or even zero-shot learning baseline that ignores private data can outperform fine-tuning on a large private dataset. AdaMix incorporates few-shot training, or cross-modal zero-shot learning, on public data prior to private fine-tuning, to improve the trade-off. AdaMix reduces the error increase from the non-private upper bound from the 167–311% of the baseline, on average across 6 datasets, to 68-92% depending on the desired privacy level selected by the user. AdaMix tackles the trade-off arising in visual classification, whereby the most privacy sensitive data, corresponding to isolated points in representation space, are also critical for high classification accuracy. In addition, AdaMix comes with strong theoretical privacy guarantees and convergence analysis.
2022-09-30
Pan, Qianqian, Wu, Jun, Lin, Xi, Li, Jianhua.  2021.  Side-Channel Analysis-Based Model Extraction on Intelligent CPS: An Information Theory Perspective. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :254–261.
The intelligent cyber-physical system (CPS) has been applied in various fields, covering multiple critical infras-tructures and human daily life support areas. CPS Security is a major concern and of critical importance, especially the security of the intelligent control component. Side-channel analysis (SCA) is the common threat exploiting the weaknesses in system operation to extract information of the intelligent CPS. However, existing literature lacks the systematic theo-retical analysis of the side-channel attacks on the intelligent CPS, without the ability to quantify and measure the leaked information. To address these issues, we propose the SCA-based model extraction attack on intelligent CPS. First, we design an efficient and novel SCA-based model extraction framework, including the threat model, hierarchical attack process, and the multiple micro-space parallel search enabled weight extraction algorithm. Secondly, an information theory-empowered analy-sis model for side-channel attacks on intelligent CPS is built. We propose a mutual information-based quantification method and derive the capacity of side-channel attacks on intelligent CPS, formulating the amount of information leakage through side channels. Thirdly, we develop the theoretical bounds of the leaked information over multiple attack queries based on the data processing inequality and properties of entropy. These convergence bounds provide theoretical means to estimate the amount of information leaked. Finally, experimental evaluation, including real-world experiments, demonstrates the effective-ness of the proposed SCA-based model extraction algorithm and the information theory-based analysis method in intelligent CPS.
2022-07-01
Günlü, Onur, Kliewer, Jörg, Schaefer, Rafael F., Sidorenko, Vladimir.  2021.  Doubly-Exponential Identification via Channels: Code Constructions and Bounds. 2021 IEEE International Symposium on Information Theory (ISIT). :1147—1152.
Consider the identification (ID) via channels problem, where a receiver wants to decide whether the transmitted identifier is its identifier, rather than decoding the identifier. This model allows to transmit identifiers whose size scales doubly-exponentially in the blocklength, unlike common transmission (or channel) codes whose size scales exponentially. It suffices to use binary constant-weight codes (CWCs) to achieve the ID capacity. By relating the parameters of a binary CWC to the minimum distance of a code and using higher-order correlation moments, two upper bounds on the binary CWC size are proposed. These bounds are shown to be upper bounds also on the identifier sizes for ID codes constructed by using binary CWCs. We propose two code constructions based on optical orthogonal codes, which are used in optical multiple access schemes, have constant-weight codewords, and satisfy cyclic cross-correlation and autocorrelation constraints. These constructions are modified and concatenated with outer Reed-Solomon codes to propose new binary CWCs optimal for ID. Improvements to the finite-parameter performance of both our and existing code constructions are shown by using outer codes with larger minimum distance vs. blocklength ratios. We also illustrate ID performance regimes for which our ID code constructions perform significantly better than existing constructions.
2022-05-10
Ben, Yanglin, Chen, Ming, Cao, Binghao, Yang, Zhaohui, Li, Zhiyang, Cang, Yihan, Xu, Zheng.  2021.  On Secrecy Sum-Rate of Artificial-Noise-Aided Multi-user Visible Light Communication Systems. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
Recently, the physical layer security (PLS) is becoming an important research area for visible light communication (VLC) systems. In this paper, the secrecy rate performance is investigated for an indoor multi-user visible light communication (VLC) system using artificial noise (AN). In the considered model, all users simultaneously communicate with the legitimate receiver under wiretap channels. The legitimate receiver uses the minimum mean squared error (MMSE) equalizer to detect the received signals. Both lower bound and upper bound of the secrecy rate are obtained for the case that users' signals are uniformly distributed. Simulation results verify the theoretical findings and show the system secrecy rate performance for various positions of illegal eavesdropper.
2022-04-19
Dani, Vidyalaxmi, Ramaiyan, Venkatesh, Jalihal, Devendra.  2021.  Covert Communication over Asynchronous Channels with Timing Advantage. 2021 IEEE Information Theory Workshop (ITW). :1–6.
We study a problem of covert communication over binary symmetric channels (BSC) in an asynchronous setup. Here, Alice seeks to communicate to Bob over a BSC while trying to be covert with respect to Willie, who observes any communication through possibly a different BSC. When Alice communicates, she transmits a message (using a codeword of length n) at a random time uniformly distributed in a window of size Aw slots. We assume that Bob has side information about the time of transmission leading to a reduced uncertainty of Ab slots for Bob, where \$A\_b$\backslash$lt A\_w\$. In this setup, we seek to characterize the limits of covert communication as a function of the timing advantage. When Aw is increasing exponentially in n, we characterize the covert capacity as a function of Aw and Ab. When Aw is increasing sub-exponentially in n, we characterize lower and upper bounds on achievable covert bits and show that positive covert rates are not feasible irrespective of timing advantage. Using numerical work, we illustrate our results for different network scenarios, and also highlight a tradeoff between timing advantage and channel advantage (between Bob and Willie).
2022-04-13
Liu, Ling, Zhang, Shengli, Ling, Cong.  2021.  Set Reconciliation for Blockchains with Slepian-Wolf Coding: Deletion Polar Codes. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP). :1–5.
In this paper, we propose a polar coding based scheme for set reconciliation between two network nodes. The system is modeled as a well-known Slepian-Wolf setting induced by a fixed number of deletions. The set reconciliation process is divided into two phases: 1) a deletion polar code is employed to help one node to identify the possible deletion indices, which may be larger than the number of genuine deletions; 2) a lossless compression polar code is then designed to feedback those indices with minimum overhead. Our scheme can be viewed as a generalization of polar codes to some emerging network-based applications such as the package synchronization in blockchains. The total overhead is linear to the number of packages, and immune to the package size.
2022-03-01
Bartz, Hannes, Puchinger, Sven.  2021.  Decoding of Interleaved Linearized Reed-Solomon Codes with Applications to Network Coding. 2021 IEEE International Symposium on Information Theory (ISIT). :160–165.
Recently, Martínez-Peñas and Kschischang (IEEE Trans. Inf. Theory, 2019) showed that lifted linearized Reed-Solomon codes are suitable codes for error control in multishot network coding. We show how to construct and decode lifted interleaved linearized Reed-Solomon codes. Compared to the construction by Martínez-Peñas-Kschischang, interleaving allows to increase the decoding region significantly (especially w.r.t. the number of insertions) and decreases the overhead due to the lifting (i.e., increases the code rate), at the cost of an increased packet size. The proposed decoder is a list decoder that can also be interpreted as a probabilistic unique decoder. Although our best upper bound on the list size is exponential, we present a heuristic argument and simulation results that indicate that the list size is in fact one for most channel realizations up to the maximal decoding radius.
2022-01-10
Govender, Castello, van Niekerk, Brett.  2021.  Secure Key Exchange by NFC for Instant Messaging. 2021 Conference on Information Communications Technology and Society (ICTAS). :27–33.
This study offers an alternative to current implementations of key exchange by utilizing NFC technologies within android mobile devices. Supporting key exchange protocols along with cryptographic algorithms are offered, which meet current security standards whilst maintaining a short key length for optimal transfer between devices. Peer-to-peer and Host Card Emulation operational modes are observed to determine the best suited approach for key exchange. The proposed model offers end to end encryption between Client-Client as opposed to the usual Client-Server encryption offered by most Instant Messaging applications.
2021-12-21
Elumar, Eray Can, Sood, Mansi, Ya\u gan, Osman.  2021.  On the Connectivity and Giant Component Size of Random K-out Graphs Under Randomly Deleted Nodes. 2021 IEEE International Symposium on Information Theory (ISIT). :2572–2577.
Random K-out graphs, denoted \$$\backslash$mathbbH(n;K)\$, are generated by each of the \$n\$ nodes drawing \$K\$ out-edges towards \$K\$ distinct nodes selected uniformly at random, and then ignoring the orientation of the arcs. Recently, random K-out graphs have been used in applications as diverse as random (pairwise) key predistribution in ad-hoc networks, anonymous message routing in crypto-currency networks, and differentially-private federated averaging. In many applications, connectivity of the random K-out graph when some of its nodes are dishonest, have failed, or have been captured is of practical interest. We provide a comprehensive set of results on the connectivity and giant component size of \$$\backslash$mathbbH(n;K\_n,$\backslash$gamma\_n)\$, i.e., random K-out graph when \textsubscriptn of its nodes, selected uniformly at random, are deleted. First, we derive conditions for \textsubscriptn and \$n\$ that ensure, with high probability (whp), the connectivity of the remaining graph when the number of deleted nodes is \$$\backslash$gamma\_n=Ømega(n)\$ and \$$\backslash$gamma\_n=o(n)\$, respectively. Next, we derive conditions for \$$\backslash$mathbbH(n;K\_n, $\backslash$gamma\_n)\$ to have a giant component, i.e., a connected subgraph with \$Ømega(n)\$ nodes, whp. This is also done for different scalings of \textsubscriptn and upper bounds are provided for the number of nodes outside the giant component. Simulation results are presented to validate the usefulness of the results in the finite node regime.
Kazempour, Narges, Mirmohseni, Mahtab, Aref, Mohammad Reza.  2021.  Anonymous Mutual Authentication: An Information Theoretic Framework. 2021 Iran Workshop on Communication and Information Theory (IWCIT). :1–6.
We consider the anonymous mutual authentication problem, which consists of a certificate authority, single or multiple verifiers, many legitimate users (provers) and any arbitrary number of illegitimate users. The legal verifier and a legitimate user must be mutually authenticated to each other using the user's key, while the identity of the user must stay unrevealed. An attacker (illegitimate prover) as well as an illegal verifier must fail in authentication. A general interactive information theoretic framework in a finite field is proposed, where the normalized total key rate as a metric for reliability is defined. Maximizing this rate has a trade-off with establishing anonymity. The problem is studied in two different scenarios: centralized scenario (one single verifier performs the authentication process) and distributed scenario (authentication is done by N verifiers, distributively). For both scenarios, achievable schemes, which satisfy the completeness, soundness (at both verifier and prover) and anonymity properties, are proposed. Increasing the size of the field, results in the key rate approaching its upper bound.
2021-12-20
Nasr, Milad, Songi, Shuang, Thakurta, Abhradeep, Papemoti, Nicolas, Carlin, Nicholas.  2021.  Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning. 2021 IEEE Symposium on Security and Privacy (SP). :866–882.
Differentially private (DP) machine learning allows us to train models on private data while limiting data leakage. DP formalizes this data leakage through a cryptographic game, where an adversary must predict if a model was trained on a dataset D, or a dataset D′ that differs in just one example. If observing the training algorithm does not meaningfully increase the adversary's odds of successfully guessing which dataset the model was trained on, then the algorithm is said to be differentially private. Hence, the purpose of privacy analysis is to upper bound the probability that any adversary could successfully guess which dataset the model was trained on.In our paper, we instantiate this hypothetical adversary in order to establish lower bounds on the probability that this distinguishing game can be won. We use this adversary to evaluate the importance of the adversary capabilities allowed in the privacy analysis of DP training algorithms.For DP-SGD, the most common method for training neural networks with differential privacy, our lower bounds are tight and match the theoretical upper bound. This implies that in order to prove better upper bounds, it will be necessary to make use of additional assumptions. Fortunately, we find that our attacks are significantly weaker when additional (realistic) restrictions are put in place on the adversary's capabilities. Thus, in the practical setting common to many real-world deployments, there is a gap between our lower bounds and the upper bounds provided by the analysis: differential privacy is conservative and adversaries may not be able to leak as much information as suggested by the theoretical bound.
2021-05-25
Ajorlou, Amir, Abbasfar, Aliazam.  2020.  An Optimized Structure of State Channel Network to Improve Scalability of Blockchain Algorithms. 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC). :73—76.
Nowadays, blockchain is very common and widely used in various fields. The properties of blockchain-based algorithms such as being decentralized and uncontrolled by institutions and governments, are the main reasons that has attracted many applications. The security and the scalability limitations are the main challenges for the development of these systems. Using second layer network is one of the various methods proposed to improve the scalability of these systems. This network can increase the total number of transactions per second by creating extra channels between the nodes that operate in a different layer not obligated to be on consensus ledger. In this paper, the optimal structure for the second layer network has been presented. In the proposed structure we try to distribute the parameters of the second layer network as symmetrically as possible. To prove the optimality of this structure we first introduce the maximum scalability bound, and then calculate it for the proposed structure. This paper will show how the second layer method can improve the scalability without any information about the rate of transactions between nodes.
2021-05-18
Hasslinger, Gerhard, Ntougias, Konstantinos, Hasslinger, Frank, Hohlfeld, Oliver.  2020.  General Knapsack Bounds of Web Caching Performance Regarding the Properties of each Cacheable Object. 2020 IFIP Networking Conference (Networking). :821–826.
Caching strategies have been evaluated and compared in many studies, most often via simulation, but also in analytic methods. Knapsack solutions provide a general analytical approach for upper bounds on web caching performance. They assume objects of maximum (value/size) ratio being selected as cache content, with flexibility to define the caching value. Therefore the popularity, cost, size, time-to-live restrictions etc. per object can be included an overall caching goal, e.g., for reducing delay and/or transport path length in content delivery. The independent request model (IRM) leads to basic knapsack bounds for static optimum cache content. We show that a 2-dimensional (2D-)knapsack solution covers arbitrary request pattern, which selects dynamically changing content yielding maximum caching value for any predefined request sequence. Moreover, Belady's optimum strategy for clairvoyant caching is identified as a special case of our 2D-knapsack solution when all objects are unique. We also summarize a comprehensive picture of the demands and efficiency criteria for web caching, including updating speed and overheads. Our evaluations confirm significant performance gaps from LRU to advanced GreedyDual and score-based web caching methods and to the knapsack bounds.
2021-04-08
Vyetrenko, S., Khosla, A., Ho, T..  2009.  On combining information-theoretic and cryptographic approaches to network coding security against the pollution attack. 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers. :788–792.
In this paper we consider the pollution attack in network coded systems where network nodes are computationally limited. We consider the combined use of cryptographic signature based security and information theoretic network error correction and propose a fountain-like network error correction code construction suitable for this purpose.
2021-02-15
Taşkın, H. K., Cenk, M..  2020.  TMVP-Friendly Primes for Efficient Elliptic Curve Cryptography. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :80–87.
The need for faster and practical cryptography is a research topic for decades. In case of elliptic curve cryptography, which was proposed by Koblitz and Miller in 1985 as a more efficient alternative to RSA, the applications in real life started after 2000s. Today, most of the popular applications and protocols like Whatsapp, Signal, iOS, Android, TLS, SSH, Bitcoin etc. make use of Elliptic curve cryptography. One of the important factor for high performance elliptic curve cryptography is the finite field multiplication. In this paper, we first describe how to choose proper prime fields that makes use of Topelitz-matrices to get faster field multiplication, then we give parameter choice details to select prime fields that supports Toeplitz-matrix vector product operations. Then, we introduce the safe curve selection rationale and discuss about security. We propose new curves, discuss implementation and benchmark results and conclude our work.
2020-09-18
Kleckler, Michelle, Mohajer, Soheil.  2019.  Secure Determinant Codes: A Class of Secure Exact-Repair Regenerating Codes. 2019 IEEE International Symposium on Information Theory (ISIT). :211—215.
{1 We present a construction for exact-repair regenerating codes with an information-theoretic secrecy guarantee against an eavesdropper with access to the content of (up to) ℓ nodes. The proposed construction works for the entire range of per-node storage and repair bandwidth for any distributed storage system with parameters (n
Hao, Jie, Shum, Kenneth W., Xia, Shu-Tao, Yang, Yi-Xian.  2019.  Classification of Optimal Ternary (r, δ)-Locally Repairable Codes Attaining the Singleton-like Bound. 2019 IEEE International Symposium on Information Theory (ISIT). :2828—2832.
In a linear code, a code symbol with (r, δ)-locality can be repaired by accessing at most r other code symbols in case of at most δ - 1 erasures. A q-ary (n, k, r, δ) locally repairable codes (LRC) in which every code symbol has (r, δ)-locality is said to be optimal if it achieves the Singleton-like bound derived by Prakash et al.. In this paper, we study the classification of optimal ternary (n, k, r, δ)-LRCs (δ \textbackslashtextgreater 2). Firstly, we propose an upper bound on the minimum distance of optimal q-ary LRCs in terms of the field size. Then, we completely determine all the 6 classes of possible parameters with which optimal ternary (n, k, r, δ)-LRCs exist. Moreover, explicit constructions of all these 6 classes of optimal ternary LRCs are proposed in the paper.
2020-06-02
Gong, Shixun, Li, Na, Wu, Huici, Tao, Xiaofeng.  2019.  Cooperative Two-Key Generation in Source-Type Model With Partial-Trusted Helpers. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :689—694.

This paper investigates the problem of generating two secret keys (SKs) simultaneously over a five-terminal system with terminals labelled as 1, 2, 3, 4 and 5. Each of terminal 2 and terminal 3 wishes to generate an SK with terminal 1 over a public channel wiretapped by a passive eavesdropper. Terminal 4 and terminal 5 respectively act as a trusted helper and an untrusted helper to assist the SK generation. All the terminals observe correlated source sequences from discrete memoryless sources (DMS) and can exchange information over a public channel with no rate constraint that the eavesdropper has access to. Based on the considered model, key capacity region is fully characterized and a source coding scheme that can achieve the capacity region is provided. Furthermore, expression for key leakage rate is obtained to analyze the security performance of the two generated keys.

2020-05-22
Rattaphun, Munlika, Prayoonwong, Amorntip, Chiu, Chih- Yi.  2019.  Indexing in k-Nearest Neighbor Graph by Hash-Based Hill-Climbing. 2019 16th International Conference on Machine Vision Applications (MVA). :1—4.
A main issue in approximate nearest neighbor search is to achieve an excellent tradeoff between search accuracy and computation cost. In this paper, we address this issue by leveraging k-nearest neighbor graph and hill-climbing to accelerate vector quantization in the query assignment process. A modified hill-climbing algorithm is proposed to traverse k-nearest neighbor graph to find closest centroids for a query, rather than calculating the query distances to all centroids. Instead of using random seeds in the original hill-climbing algorithm, we generate high-quality seeds based on the hashing technique. It can boost the query assignment efficiency due to a better start-up in hill-climbing. We evaluate the experiment on the benchmarks of SIFT1M and GIST1M datasets, and show the proposed hashing-based seed generation effectively improves the search performance.
2020-03-23
Hayashi, Masahito.  2019.  Semi-Finite Length Analysis for Secure Random Number Generation. 2019 IEEE International Symposium on Information Theory (ISIT). :952–956.
To discuss secure key generation from imperfect random numbers, we address the secure key generation length. There are several studies for its asymptotic expansion up to the order √n or log n. However, these expansions have errors of the order o(√n) or o(log n), which does not go to zero asymptotically. To resolve this problem, we derive the asymptotic expansion up to the constant order for upper and lower bounds of these optimal values. While the expansions of upper and lower bonds do not match, they clarify the ranges of these optimal values, whose errors go to zero asymptotically.
2020-03-09
Li, Zhixin, Liu, Lei, Kong, Degang.  2019.  Virtual Machine Failure Prediction Method Based on AdaBoost-Hidden Markov Model. 2019 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :700–703.

The failure prediction method of virtual machines (VM) guarantees reliability to cloud platforms. However, the uncertainty of VM security state will affect the reliability and task processing capabilities of the entire cloud platform. In this study, a failure prediction method of VM based on AdaBoost-Hidden Markov Model was proposed to improve the reliability of VMs and overall performance of cloud platforms. This method analyzed the deep relationship between the observation state and the hidden state of the VM through the hidden Markov model, proved the influence of the AdaBoost algorithm on the hidden Markov model (HMM), and realized the prediction of the VM failure state. Results show that the proposed method adapts to the complex dynamic cloud platform environment, can effectively predict the failure state of VMs, and improve the predictive ability of VM security state.