Biblio
The huge volume, variety, and velocity of big data have empowered Machine Learning (ML) techniques and Artificial Intelligence (AI) systems. However, the vast portion of data used to train AI systems is sensitive information. Hence, any vulnerability has a potentially disastrous impact on privacy aspects and security issues. Nevertheless, the increased demands for high-quality AI from governments and companies require the utilization of big data in the systems. Several studies have highlighted the threats of big data on different platforms and the countermeasures to reduce the risks caused by attacks. In this paper, we provide an overview of the existing threats which violate privacy aspects and security issues inflicted by big data as a primary driving force within the AI/ML workflow. We define an adversarial model to investigate the attacks. Additionally, we analyze and summarize the defense strategies and countermeasures of these attacks. Furthermore, due to the impact of AI systems in the market and the vast majority of business sectors, we also investigate Standards Developing Organizations (SDOs) that are actively involved in providing guidelines to protect the privacy and ensure the security of big data and AI systems. Our far-reaching goal is to bridge the research and standardization frame to increase the consistency and efficiency of AI systems developments guaranteeing customer satisfaction while transferring a high degree of trustworthiness.
In recent trends, privacy preservation is the most predominant factor, on big data analytics and cloud computing. Every organization collects personal data from the users actively or passively. Publishing this data for research and other analytics without removing Personally Identifiable Information (PII) will lead to the privacy breach. Existing anonymization techniques are failing to maintain the balance between data privacy and data utility. In order to provide a trade-off between the privacy of the users and data utility, a Mondrian based k-anonymity approach is proposed. To protect the privacy of high-dimensional data Deep Neural Network (DNN) based framework is proposed. The experimental result shows that the proposed approach mitigates the information loss of the data without compromising privacy.
Analyzing clustering results may lead to the privacy disclosure issue in big data mining. In this paper, we put forward a differential privacy-based protecting data preprocessing method for distance-based clustering. Firstly, the data distortion technique differential privacy is used to prevent the distances in distance-based clustering from disclosing the relationships. Differential privacy may affect the clustering results while protecting privacy. Then an adaptive privacy budget parameter adjustment mechanism is applied for keeping the balance between the privacy protection and the clustering results. By solving the maximum and minimum problems, the differential privacy budget parameter can be obtained for different clustering algorithms. Finally, we conduct extensive experiments to evaluate the performance of our proposed method. The results demonstrate that our method can provide privacy protection with precise clustering results.
Recently, cloud computing is an emerging technology along with big data. Both technologies come together. Due to the enormous size of data in big data, it is impossible to store them in local storage. Alternatively, even we want to store them locally, we have to spend much money to create bit data center. One way to save money is store big data in cloud storage service. Cloud storage service provides users space and security to store the file. However, relying on single cloud storage may cause trouble for the customer. CSP may stop its service anytime. It is too risky if data owner hosts his file only single CSP. Also, the CSP is the third party that user have to trust without verification. After deploying his file to CSP, the user does not know who access his file. Even CSP provides a security mechanism to prevent outsider attack. However, how user ensure that there is no insider attack to steal or corrupt the file. This research proposes the way to minimize the risk, ensure data privacy, also accessing control. The big data file is split into chunks and distributed to multiple cloud storage provider. Even there is insider attack; the attacker gets only part of the file. He cannot reconstruct the whole file. After splitting the file, metadata is generated. Metadata is a place to keep chunk information, includes, chunk locations, access path, username and password of data owner to connect each CSP. Asymmetric security concept is applied to this research. The metadata will be encrypted and transfer to the user who requests to access the file. The file accessing, monitoring, metadata transferring is functions of dew computing which is an intermediate server between the users and cloud service.
The increasing complexity and ubiquity in user connectivity, computing environments, information content, and software, mobile, and web applications transfers the responsibility of privacy management to the individuals. Hence, making it extremely difficult for users to maintain the intelligent and targeted level of privacy protection that they need and desire, while simultaneously maintaining their ability to optimally function. Thus, there is a critical need to develop intelligent, automated, and adaptable privacy management systems that can assist users in managing and protecting their sensitive data in the increasingly complex situations and environments that they find themselves in. This work is a first step in exploring the development of such a system, specifically how user personality traits and other characteristics can be used to help automate determination of user sharing preferences for a variety of user data and situations. The Big-Five personality traits of openness, conscientiousness, extroversion, agreeableness, and neuroticism are examined and used as inputs into several popular machine learning algorithms in order to assess their ability to elicit and predict user privacy preferences. Our results show that the Big-Five personality traits can be used to significantly improve the prediction of user privacy preferences in a number of contexts and situations, and so using machine learning approaches to automate the setting of user privacy preferences has the potential to greatly reduce the burden on users while simultaneously improving the accuracy of their privacy preferences and security.
In this paper, we review big data characteristics and security challenges in the cloud and visit different cloud domains and security regulations. We propose using integrated auditing for secure data storage and transaction logs, real-time compliance and security monitoring, regulatory compliance, data environment, identity and access management, infrastructure auditing, availability, privacy, legality, cyber threats, and granular auditing to achieve big data security. We apply a stochastic process model to conduct security analyses in availability and mean time to security failure. Potential future works are also discussed.
Enterprises usually provide strong controls to prevent cyberattacks and inadvertent leakage of data to external entities. However, in the case where employees and data scientists have legitimate access to analyze and derive insights from the data, there are insufficient controls and employees are usually permitted access to all information about the customers of the enterprise including sensitive and private information. Though it is important to be able to identify useful patterns of one's customers for better customization and service, customers' privacy must not be sacrificed to do so. We propose an alternative — a framework that will allow privacy preserving data analytics over big data. In this paper, we present an efficient and scalable framework for Apache Spark, a cluster computing framework, that provides strong privacy guarantees for users even in the presence of an informed adversary, while still providing high utility for analysts. The framework, titled Shade, includes two mechanisms — SparkLAP, which provides Laplacian perturbation based on a user's query and SparkSAM, which uses the contents of the database itself in order to calculate the perturbation. We show that the performance of Shade is substantially better than earlier differential privacy systems without loss of accuracy, particularly when run on datasets small enough to fit in memory, and find that SparkSAM can even exceed performance of an identical nonprivate Spark query.
In the age of Big Data, we are witnessing a huge proliferation of digital data capturing our lives and our surroundings. Data privacy is a critical barrier to data analytics and privacy-preserving data disclosure becomes a key aspect to leveraging large-scale data analytics due to serious privacy risks. Traditional privacy-preserving data publishing solutions have focused on protecting individual's private information while considering all aggregate information about individuals as safe for disclosure. This paper presents a new privacy-aware data disclosure scheme that considers group privacy requirements of individuals in bipartite association graph datasets (e.g., graphs that represent associations between entities such as customers and products bought from a pharmacy store) where even aggregate information about groups of individuals may be sensitive and need protection. We propose the notion of $ε$g-Group Differential Privacy that protects sensitive information of groups of individuals at various defined group protection levels, enabling data users to obtain the level of information entitled to them. Based on the notion of group privacy, we develop a suite of differentially private mechanisms that protect group privacy in bipartite association graphs at different group privacy levels based on specialization hierarchies. We evaluate our proposed techniques through extensive experiments on three real-world association graph datasets and our results demonstrate that the proposed techniques are effective, efficient and provide the required guarantees on group privacy.
With the development of modern logistics industry railway freight enterprises as the main traditional logistics enterprises, the service mode is facing many problems. In the era of big data, for railway freight enterprises, coordinated development and sharing of information resources have become the requirements of the times, while how to protect the privacy of citizens has become one of the focus issues of the public. To prevent the disclosure or abuse of the citizens' privacy information, the citizens' privacy needs to be preserved in the process of information opening and sharing. However, most of the existing privacy preserving models cannot to be used to resist attacks with continuously growing background knowledge. This paper presents the method of applying differential privacy to protect associated data, which can be shared in railway freight service association information. First, the original service data need to slice by optimal shard length, then differential method and apriori algorithm is used to add Laplace noise in the Candidate sets. Thus the citizen's privacy information can be protected even if the attacker gets strong background knowledge. Last, sharing associated data to railway information resource partners. The steps and usefulness of the discussed privacy preservation method is illustrated by an example.
In smart grid, large quantities of data is collected from various applications, such as smart metering substation state monitoring, electric energy data acquisition, and smart home. Big data acquired in smart grid applications is usually sensitive. For instance, in order to dispatch accurately and support the dynamic price, lots of smart meters are installed at user's house to collect the real-time data, but all these collected data are related to user privacy. In this paper, we propose a data aggregation scheme based on secret sharing with fault tolerance in smart grid, which ensures that control center gets the integrated data without revealing user's privacy. Meanwhile, we also consider fault tolerance during the data aggregation. At last, we analyze the security of our scheme and carry out experiments to validate the results.
In the recent years, we have observed the development of several connected and mobile devices intended for daily use. This development has come with many risks that might not be perceived by the users. These threats are compromising when an unauthorized entity has access to private big data generated through the user objects in the Internet of Things. In the literature, many solutions have been proposed in order to protect the big data, but the security remains a challenging issue. This work is carried out with the aim to provide a solution to the access control to the big data and securing the localization of their generator objects. The proposed models are based on Attribute Based Encryption, CHORD protocol and $μ$TESLA. Through simulations, we compare our solutions to concurrent protocols and we show its efficiency in terms of relevant criteria.
Location privacy has become a significant challenge of big data. Particularly, by the advantage of big data handling tools availability, huge location data can be managed and processed easily by an adversary to obtain user private information from Location-Based Services (LBS). So far, many methods have been proposed to preserve user location privacy for these services. Among them, dummy-based methods have various advantages in terms of implementation and low computation costs. However, they suffer from the spatiotemporal correlation issue when users submit consecutive requests. To solve this problem, a practical hybrid location privacy protection scheme is presented in this paper. The proposed method filters out the correlated fake location data (dummies) before submissions. Therefore, the adversary can not identify the user's real location. Evaluations and experiments show that our proposed filtering technique significantly improves the performance of existing dummy-based methods and enables them to effectively protect the user's location privacy in the environment of big data.
Smart energy meters record electricity consumption and generation at fine-grained intervals, and are among the most widely deployed sensors in the world. Energy data embeds detailed information about a building's energy-efficiency, as well as the behavior of its occupants, which academia and industry are actively working to extract. In many cases, either inadvertently or by design, these third-parties only have access to anonymous energy data without an associated location. The location of energy data is highly useful and highly sensitive information: it can provide important contextual information to improve big data analytics or interpret their results, but it can also enable third-parties to link private behavior derived from energy data with a particular location. In this paper, we present Weatherman, which leverages a suite of analytics techniques to localize the source of anonymous energy data. Our key insight is that energy consumption data, as well as wind and solar generation data, largely correlates with weather, e.g., temperature, wind speed, and cloud cover, and that every location on Earth has a distinct weather signature that uniquely identifies it. Weatherman represents a serious privacy threat, but also a potentially useful tool for researchers working with anonymous smart meter data. We evaluate Weatherman's potential in both areas by localizing data from over one hundred smart meters using a weather database that includes data from over 35,000 locations. Our results show that Weatherman localizes coarse (one-hour resolution) energy consumption, wind, and solar data to within 16.68km, 9.84km, and 5.12km, respectively, on average, which is more accurate using much coarser resolution data than prior work on localizing only anonymous solar data using solar signatures.
The main issue with big data in cloud is the processed or used always need to be by third party. It is very important for the owners of data or clients to trust and to have the guarantee of privacy for the information stored in cloud or analyzed as big data. The privacy models studied in previous research showed that privacy infringement for big data happened because of limitation, privacy guarantee rate or dissemination of accurate data which is obtainable in the data set. In addition, there are various privacy models. In order to determine the best and the most appropriate model to be applied in the future, which also guarantees big data privacy, it is necessary to invest in research and study. In the next part, we surfed some of the privacy models in order to determine the advantages and disadvantages of each model in privacy assurance for big data in cloud. The present study also proposes combined Diff-Anonym algorithm (K-anonymity and differential models) to provide data anonymity with guarantee to keep balance between ambiguity of private data and clarity of general data.