Biblio
The vehicle-to-grid (V2G) network has a clear advantage in terms of economic benefits, and it has grabbed the interest of powergrid and electric vehicle (EV) consumers. Many V2G techniques, at present, for example, use bilinear pairing to execute the authentication scheme, which results in significant computational costs. Furthermore, in the existing V2G techniques, the system master key is issued independently by the third parties, it is vulnerable to leaking if the third party is compromised by an attacker. This paper presents an efficient and secure anonymous authentication scheme for V2G networks to overcome this issue we use a lightweight authentication system for electric vehicles and smart grids. In the proposed technique, the keys are generated by the trusted authority after the successful registration of EVs in the trusted authority and the dispatching center. The suggested scheme not only enhances the verification performance of V2G networks and also protects against inbuilt hackers.
With the proliferation of data in Internet-related applications, incidences of cyber security have increased manyfold. Energy management, which is one of the smart city layers, has also been experiencing cyberattacks. Furthermore, the Distributed Energy Resources (DER), which depend on different controllers to provide energy to the main physical smart grid of a smart city, is prone to cyberattacks. The increased cyber-attacks on DER systems are mainly because of its dependency on digital communication and controls as there is an increase in the number of devices owned and controlled by consumers and third parties. This paper analyzes the major cyber security and privacy challenges that might inflict, damage or compromise the DER and related controllers in smart cities. These challenges highlight that the security and privacy on the Internet of Things (IoT), big data, artificial intelligence, and smart grid, which are the building blocks of a smart city, must be addressed in the DER sector. It is observed that the security and privacy challenges in smart cities can be solved through the distributed framework, by identifying and classifying stakeholders, using appropriate model, and by incorporating fault-tolerance techniques.
In the IoT (Internet of Things) domain, it is still a challenge to modify the routing behavior of IoT traffic at the decentralized backbone network. In this paper, centralized and flexible software-defined networking (SDN) is utilized to route the IoT traffic. The management of IoT data transmission through the SDN core network gives the chance to choose the path with the lowest delay, minimum packet loss, or hops. Therefore, fault-tolerant delay awareness routing is proposed for the emulated SDN-based backbone network to handle delay-sensitive IoT traffic. Besides, the hybrid form of GNS3 and Mininet-WiFi emulation is introduced to collaborate the SDN-based backbone network in GNS3 and the 6LoWPAN (IPv6 over Low Power Personal Area Network) sensor network in Mininet-WiFi.