Biblio
In a computer world, to identify anyone by doing a job or to authenticate by checking their identification and give access to computer. Access Control model comes in to picture when require to grant the permissions to individual and complete the duties. The access control models cannot give complete security when dealing with cloud computing area, where access control model failed to handle the attributes which are requisite to inhibit access based on time and location. When the data outsourced in the cloud, the information holders expect the security and confidentiality for their outsourced data. The data will be encrypted before outsourcing on cloud, still they want control on data in cloud server, where simple encryption is not a complete solution. To irradiate these issues, unlike access control models proposed Attribute Based Encryption standards (ABE). In ABE schemes there are different types like Key Policy-ABE (KP-ABE), Cipher Text-ABE (CP-ABE) and so on. The proposed method applied the access control policy of CP-ABE with Advanced Encryption Standard and used elliptic curve for key generation by using multi stage encryption which divides the users into two domains, public and private domains and shuffling the data base records to protect from inference attacks.
Most searchable attribute-based encryption schemes only support the search for single-keyword without attribute revocation, the data user cannot quickly detect the validity of the ciphertext returned by the cloud service provider. Therefore, this paper proposes an authorization of searchable CP-ABE scheme with attribute revocation and applies the scheme to the cloud computing environment. The data user to send the authorization information to the authorization server for authorization, assists the data user to effectively detect the ciphertext information returned by the cloud service provider while supporting the revocation of the user attribute in a fine-grained access control structure without updating the key during revocation stage. In the random oracle model based on the calculation of Diffie-Hellman problem, it is proved that the scheme can satisfy the indistinguishability of ciphertext and search trapdoor. Finally, the performance analysis shows that the scheme has higher computational efficiency.
For future Internet, information-centric networking (ICN) is considered a potential solution to many of its current problems, such as content distribution, mobility, and security. Named Data Networking (NDN) is a more popular ICN project. However, concern regarding the protection of user data persists. Information caching in NDN decouples content and content publishers, which leads to content security threats due to lack of secure controls. Therefore, this paper presents a CP-ABE (ciphertext policy attribute based encryption) access control scheme based on hash table and data segmentation (CHTDS). Based on data segmentation, CHTDS uses a method of linearly splitting fixed data blocks, which effectively improves data management. CHTDS also introduces CP-ABE mechanism and hash table data structure to ensure secure access control and privilege revocation does not need to re-encrypt the published content. The analysis results show that CHTDS can effectively realize the security and fine-grained access control in the NDN environment, and reduce communication overhead for content access.
KP-ABE mechanism emerges as one of the most suitable security scheme for asymmetric encryption. It has been widely used to implement access control solutions. However, due to its expensive overhead, it is difficult to consider this cryptographic scheme in resource-limited networks, such as the IoT. As the cloud has become a key infrastructural support for IoT applications, it is interesting to exploit cloud resources to perform heavy operations. In this paper, a collaborative variant of KP-ABE named C-KP-ABE for cloud-based IoT applications is proposed. Our proposal is based on the use of computing power and storage capacities of cloud servers and trusted assistant nodes to run heavy operations. A performance analysis is conducted to show the effectiveness of the proposed solution.
An emerging Internet business is residential proxy (RESIP) as a service, in which a provider utilizes the hosts within residential networks (in contrast to those running in a datacenter) to relay their customers' traffic, in an attempt to avoid server- side blocking and detection. With the prominent roles the services could play in the underground business world, little has been done to understand whether they are indeed involved in Cybercrimes and how they operate, due to the challenges in identifying their RESIPs, not to mention any in-depth analysis on them. In this paper, we report the first study on RESIPs, which sheds light on the behaviors and the ecosystem of these elusive gray services. Our research employed an infiltration framework, including our clients for RESIP services and the servers they visited, to detect 6 million RESIP IPs across 230+ countries and 52K+ ISPs. The observed addresses were analyzed and the hosts behind them were further fingerprinted using a new profiling system. Our effort led to several surprising findings about the RESIP services unknown before. Surprisingly, despite the providers' claim that the proxy hosts are willingly joined, many proxies run on likely compromised hosts including IoT devices. Through cross-matching the hosts we discovered and labeled PUP (potentially unwanted programs) logs provided by a leading IT company, we uncovered various illicit operations RESIP hosts performed, including illegal promotion, Fast fluxing, phishing, malware hosting, and others. We also reverse engi- neered RESIP services' internal infrastructures, uncovered their potential rebranding and reselling behaviors. Our research takes the first step toward understanding this new Internet service, contributing to the effective control of their security risks.
With the rapid development of the Internet, the dark network has also been widely used in the Internet [1]. Due to the anonymity of the dark network, many illegal elements have committed illegal crimes on the dark. It is difficult for law enforcement officials to track the identity of these cyber criminals using traditional network survey techniques based on IP addresses [2]. The threat information is mainly from the dark web forum and the dark web market. In this paper, we introduce the current mainstream dark network communication system TOR and develop a visual dark web forum post association analysis system to graphically display the relationship between various forum messages and posters, and help law enforcement officers to explore deep levels. Clues to analyze crimes in the dark network.
Online Social Networks(OSN) plays a vital role in our day to day life. The most popular social network, Facebook alone counts currently 2.23 billion users worldwide. Online social network users are aware of the various security risks that exist in this scenario including privacy violations and they are utilizing the privacy settings provided by OSN providers to make their data safe. But most of them are unaware of the risk which exists after deletion of their data which is not really getting deleted from the OSN server. Self destruction of data is one of the prime recommended methods to achieve assured deletion of data. Numerous techniques have been developed for self destruction of data and this paper discusses and evaluates these techniques along with the various privacy risks faced by an OSN user in this web centered world.
Blockchain is a database technology that provides the integrity and trust of the system can't make arbitrary modifications and deletions by being an append-only distributed ledger. That is, the blockchain is not a modification or deletion but a CRAB (Create-Retrieve-Append-Burn) method in which data can be read and written according to a legitimate user's access right(For example, owner private key). However, this can not delete the created data once, which causes problems such as privacy breach. In this paper, we propose an on-off block-chained Hybrid Blockchain system to separate the data and save the connection history to the blockchain. In addition, the state is changed to the distributed database separately from the ledger record, and the state is changed by generating the arbitrary injection in the XOR form, so that the history of modification / deletion of the Off Blockchain can be efficiently retrieved.
A prioritized cyber defense remediation plan is critical for effective risk management in cyber-physical systems (CPS). The increased integration of Information Technology (IT)/Operational Technology (OT) in CPS has to lead to the need to identify the critical assets which, when affected, will impact resilience and safety. In this work, we propose a methodology for prioritized cyber risk remediation plan that balances operational resilience and economic loss (safety impacts) in CPS. We present a platform for modeling and analysis of the effect of cyber threats and random system faults on the safety of CPS that could lead to catastrophic damages. We propose to develop a data-driven attack graph and fault graph-based model to characterize the exploitability and impact of threats in CPS. We develop an operational impact assessment to quantify the damages. Finally, we propose the development of a strategic response decision capability that proposes optimal mitigation actions and policies that balances the trade-off between operational resilience (Tactical Risk) and Strategic Risk.
Content Delivery Networks(CDN) is a standout amongst the most encouraging innovations that upgrade performance for its clients' websites by diverting web demands from browsers to topographically dispersed CDN surrogate nodes. However, due to the variable nature of CDN, it suffers from various security and resource allocation issues. The most common attack which is used to bring down a whole network as well as CDN without even finding a loophole in the security is DDoS. In this proposal, we proposed a distributed virtual honeypot model for diminishing DDoS attacks and prevent intrusion in securing CDN. Honeypots are specially utilized to imitate the primary server with the goal that the attack is alleviated to the fake rather than the main server. Our proposed layer based model utilizes honeypot to be more effective reducing the cost of the system as well as maintaining the smooth delivery in geographically dispersed servers without performance degradation.
The amount of connected devices in the industrial environment is growing continuously, due to the ongoing demands of new features like predictive maintenance. New business models require more data, collected by IIoT edge node sensors based on inexpensive and low performance Microcontroller Units (MCUs). A negative side effect of this rise of interconnections is the increased attack surface, enabled by a larger network with more network services. Attaching badly documented and cheap devices to industrial networks often without permission of the administrator even further increases the security risk. A decent method to monitor the network and detect “unwanted” devices is network scanning. Typically, this scanning procedure is executed by a computer or server in each sub-network. In this paper, we introduce network scanning and mapping as a building block to scan directly from the Industrial Internet of Things (IIoT) edge node devices. This module scans the network in a pseudo-random periodic manner to discover devices and detect changes in the network structure. Furthermore, we validate our approach in an industrial testbed to show the feasibility of this approach.
Withgrowing times and technology, and the data related to it is increasing on daily basis and so is the daunting task to manage it. The present solution to this problem i.e our present databases, are not the long-term solutions. These data volumes need to be stored safely and retrieved safely to use. This paper presents an overview of security issues for big data. Big Data encompasses data configuration, distribution and analysis of the data that overcome the drawbacks of traditional data processing technology. Big data manages, stores and acquires data in a speedy and cost-effective manner with the help of tools, technologies and frameworks.
Cloud Computing is the most promising paradigm in recent times. It offers a cost-efficient service to individual and industries. However, outsourcing sensitive data to entrusted Cloud servers presents a brake to Cloud migration. Consequently, improving the security of data access is the most critical task. As an efficient cryptographic technique, Ciphertext Policy Attribute Based Encryption(CP-ABE) develops and implements fine-grained, flexible and scalable access control model. However, existing CP-ABE based approaches suffer from some limitations namely revocation, data owner overhead and computational cost. In this paper, we propose a sliced revocable solution resolving the aforementioned issues abbreviated RS-CPABE. We applied splitting algorithm. We execute symmetric encryption with Advanced Encryption Standard (AES)in large data size and asymmetric encryption with CP-ABE in constant key length. We re-encrypt in case of revocation one single slice. To prove the proposed model, we expose security and performance evaluation.