Biblio
Adversary emulation is an offensive exercise that provides a comprehensive assessment of a system’s resilience against cyber attacks. However, adversary emulation is typically a manual process, making it costly and hard to deploy in cyber-physical systems (CPS) with complex dynamics, vulnerabilities, and operational uncertainties. In this paper, we develop an automated, domain-aware approach to adversary emulation for CPS. We formulate a Markov Decision Process (MDP) model to determine an optimal attack sequence over a hybrid attack graph with cyber (discrete) and physical (continuous) components and related physical dynamics. We apply model-based and model-free reinforcement learning (RL) methods to solve the discrete-continuous MDP in a tractable fashion. As a baseline, we also develop a greedy attack algorithm and compare it with the RL procedures. We summarize our findings through a numerical study on sensor deception attacks in buildings to compare the performance and solution quality of the proposed algorithms.
In Infrastructure-as-a-Service clouds, there exist many virtual machines (VMs) that are not used for a long time. For such VMs, many vulnerabilities are often found in installed software while VMs are suspended. If security updates are applied to such VMs after the VMs are resumed, the VMs easily suffer from attacks via the Internet. To solve this problem, offline update of VMs has been proposed, but some approaches have to permit cloud administrators to resume users' VMs. The others are applicable only to completely stopped VMs and often corrupt virtual disks if they are applied to suspended VMs. In addition, it is sometimes difficult to accurately emulate security updates offline. In this paper, we propose OUassister, which enables consistent offline update of suspended VMs. OUassister emulates security updates of VMs offline in a non-intrusive manner and applies the emulation results to the VMs online. This separation prevents virtual disks of even suspended VMs from being corrupted. For more accurate emulation of security updates, OUassister provides an emulation environment using a technique called VM introspection. Using this environment, it automatically extracts updated files and executed scripts. We have implemented OUassister in Xen and confirmed that the time for critical online update was largely reduced.
With the improvement in technology and with the increase in the use of wireless devices there is deficiency of radio spectrum. Cognitive radio is considered as the solution for this problem. Cognitive radio is capable to detect which communication channels are in use and which are free, and immediately move into free channels while avoiding the used ones. This increases the usage of radio frequency spectrum. Any wireless system is prone to attack. Likewise, the main two attacks in the physical layer of cognitive radio are Primary User Emulation Attack (PUEA) and replay attack. This paper focusses on mitigating these two attacks with the aid of authentication tag and distance calculation. Mitigation of these attacks results in error free transmission which in turn fallouts in efficient dynamic spectrum access.
The primary objective of Cognitive Radio Networks (CRN) is to opportunistically utilize the available spectrum for efficient and seamless communication. Like all other radio networks, Cognitive Radio Network also suffers from a number of security attacks and Primary User Emulation Attack (PUEA) is vital among them. Primary user Emulation Attack not only degrades the performance of the Cognitive Radio Networks but also dissolve the objective of Cognitive Radio Network. Efficient and secure authentication of Primary Users (PU) is an only solution to mitigate Primary User Emulation Attack but most of the mechanisms designed for this are either complex or make changes to the spectrum. Here, we proposed a mechanism to authenticate Primary Users in Cognitive Radio Network which is neither complex nor make any changes to spectrum. The proposed mechanism is secure and also has improved the performance of the Cognitive Radio Network substantially.
Primary user emulation (PUE) attack causes security issues in a cognitive radio network (CRN) while sensing the unused spectrum. In PUE attack, malicious users transmit an emulated primary signal in spectrum sensing interval to secondary users (SUs) to forestall them from accessing the primary user (PU) spectrum bands. In the present paper, the defense against such attack by Neyman-Pearson criterion is shown in terms of total error probability. Impact of several parameters such as attacker strength, attacker's presence probability, and signal-to-noise ratio on SU is shown. Result shows proposed method protect the harmful effects of PUE attack in spectrum sensing.
With the rapid proliferation of mobile users, the spectrum scarcity has become one of the issues that have to be addressed. Cognitive Radio technology addresses this problem by allowing an opportunistic use of the spectrum bands. In cognitive radio networks, unlicensed users can use licensed channels without causing harmful interference to licensed users. However, cognitive radio networks can be subject to different security threats which can cause severe performance degradation. One of the main attacks on these networks is the primary user emulation in which a malicious node emulates the characteristics of the primary user signals. In this paper, we propose a detection technique of this attack based on the RSS-based localization with the maximum likelihood estimation. The simulation results show that the proposed technique outperforms the RSS-based localization method in detecting the primary user emulation attacker.
Hardware Trojans, implantable at a myriad of points within the supply chain, are difficult to detect and identify. By emulating systems on programmable hardware, the authors have created a tool from which to create and evaluate Trojan attack signatures and therefore enable better Trojan detection (for in-service systems) and prevention (for in-design systems).
As smart grid systems become increasingly reliant on networks of control devices, attacks on their inherent security vulnerabilities could lead to catastrophic system failures. Network Intrusion Detection Systems(NIDS) detect such attacks by learning traffic patterns and finding anomalies in them. However, availability of data for robust training and evaluation of NIDS is rare due to associated operational and security risks of sharing such data. Consequently, we present Melody, a scalable framework for synthesizing such datasets. Melody models both, the cyber and physical components of the smart grid by integrating a simulated physical network with an emulated cyber network while using virtual time for high temporal fidelity. We present a systematic approach to generate traffic representing multi-stage attacks, where each stage is either emulated or recreated with a mechanism to replay arbitrary packet traces. We describe and evaluate the suitability of Melodys datasets for intrusion detection, by analyzing the extent to which temporal accuracy of pertinent features is maintained.
Code reuse attacks based on return oriented programming (ROP) are becoming more and more prevalent every year. They started as a way to circumvent operating systems protections against injected code, but they are now also used as a technique to keep the malicious code hidden from detection and analysis systems. This means that while in the past ROP chains were short and simple (and therefore did not require any dedicated tool for their analysis), we recently started to observe very complex algorithms – such as a complete rootkit – implemented entirely as a sequence of ROP gadgets. In this paper, we present a set of techniques to analyze complex code reuse attacks. First, we identify and discuss the main challenges that complicate the reverse engineer of code implemented using ROP. Second, we propose an emulation-based framework to dissect, reconstruct, and simplify ROP chains. Finally, we test our tool on the most complex example available to date: a ROP rootkit containing four separate chains, two of them dynamically generated at runtime.
Embedded devices are becoming more widespread, interconnected, and web-enabled than ever. However, recent studies showed that embedded devices are far from being secure. Moreover, many embedded systems rely on web interfaces for user interaction or administration. Web security is still difficult and therefore the web interfaces of embedded systems represent a considerable attack surface. In this paper, we present the first fully automated framework that applies dynamic firmware analysis techniques to achieve, in a scalable manner, automated vulnerability discovery within embedded firmware images. We apply our framework to study the security of embedded web interfaces running in Commercial Off-The-Shelf (COTS) embedded devices, such as routers, DSL/cable modems, VoIP phones, IP/CCTV cameras. We introduce a methodology and implement a scalable framework for discovery of vulnerabilities in embedded web interfaces regardless of the devices' vendor, type, or architecture. To reach this goal, we perform full system emulation to achieve the execution of firmware images in a software-only environment, i.e., without involving any physical embedded devices. Then, we automatically analyze the web interfaces within the firmware using both static and dynamic analysis tools. We also present some interesting case-studies and discuss the main challenges associated with the dynamic analysis of firmware images and their web interfaces and network services. The observations we make in this paper shed light on an important aspect of embedded devices which was not previously studied at a large scale.