Biblio
In order to strengthen information security, practical solutions to reduce information security stress are needed because the motivation of the members of the organization who use it is needed to work properly. Therefore, this study attempts to suggest the key factors that can enhance security while reducing the information security stress of organization members. To this end, based on the theory of protection motivation, trust and security stress in information security policies are set as mediating factors to explain changes in security reinforcement behavior, and risk, efficacy, and reaction costs of cyberattacks are considered as prerequisites. Our study suggests a solution to the security reinforcement problem by analyzing the factors that influence the behavior of organization members that can raise the protection motivation of the organization members.
At present, in the face of the huge and complex data in cloud computing, the parallel computing ability of quantum computing is particularly important. Quantum principal component analysis algorithm is used as a method of quantum state tomography. We perform feature extraction on the eigenvalue matrix of the density matrix after feature decomposition to achieve dimensionality reduction, proposed quantum principal component extraction algorithm (QPCE). Compared with the classic algorithm, this algorithm achieves an exponential speedup under certain conditions. The specific realization of the quantum circuit is given. And considering the limited computing power of the client, we propose a quantum homomorphic ciphertext dimension reduction scheme (QHEDR), the client can encrypt the quantum data and upload it to the cloud for computing. And through the quantum homomorphic encryption scheme to ensure security. After the calculation is completed, the client updates the key locally and decrypts the ciphertext result. We have implemented a quantum ciphertext dimensionality reduction scheme implemented in the quantum cloud, which does not require interaction and ensures safety. In addition, we have carried out experimental verification on the QPCE algorithm on IBM's real computing platform. Experimental results show that the algorithm can perform ciphertext dimension reduction safely and effectively.
Cyber resilience has become a strategic point of information security in recent years. In the face of complex attack means and severe internal and external threats, it is difficult to achieve 100% protection against information systems. It is necessary to enhance the continuous service of information systems based on network resiliency and take appropriate compensation measures in case of protection failure, to ensure that the mission can still be achieved under attack. This paper combs the definition, cycle, and state of cyber resilience, and interprets the cyber resiliency engineering framework, to better understand cyber resilience. In addition, we also discuss the evolution of security architecture and analyze the impact of cyber resiliency on security architecture. Finally, the strategies and schemes of enhancing cyber resilience represented by zero trust and endogenous security are discussed.
Software developers can use diverse techniques and tools to reduce the number of vulnerabilities, but the effectiveness of existing solutions in real projects is questionable. For example, Static Analysis Tools (SATs) report potential vulnerabilities by analyzing code patterns, and Software Metrics (SMs) can be used to predict vulnerabilities based on high-level characteristics of the code. In theory, both approaches can be applied from the early stages of the development process, but it is well known that they fail to detect critical vulnerabilities and raise a large number of false alarms. This paper studies the hypothesis of using Machine Learning (ML) to combine alerts from SATs with SMs to predict vulnerabilities in a large software project (under development for many years). In practice, we use four ML algorithms, alerts from two SATs, and a large number of SMs to predict whether a source code file is vulnerable or not (binary classification) and to predict the vulnerability category (multiclass classification). Results show that one can achieve either high precision or high recall, but not both at the same time. To understand the reason, we analyze and compare snippets of source code, demonstrating that vulnerable and non-vulnerable files share similar characteristics, making it hard to distinguish vulnerable from non-vulnerable code based on SAT alerts and SMs.
Security attacks present unique challenges to self-adaptive system design due to the adversarial nature of the environment. However, modeling the system as a single player, as done in prior works in security domain, is insufficient for the system under partial compromise and for the design of fine-grained defensive strategies where the rest of the system with autonomy can cooperate to mitigate the impact of attacks. To deal with such issues, we propose a new self-adaptive framework incorporating Bayesian game and model the defender (i.e., the system) at the granularity of components in system architecture. The system architecture model is translated into a Bayesian multi-player game, where each component is modeled as an independent player while security attacks are encoded as variant types for the components. The defensive strategy for the system is dynamically computed by solving the pure equilibrium to achieve the best possible system utility, improving the resiliency of the system against security attacks.
Cyber-physical systems are vulnerable to attacks that can cause them to reach undesirable states. This paper provides a theoretical solution for increasing the resiliency of control systems through the use of a high-authority supervisor that monitors and regulates control signals sent to the actuator. The supervisor aims to determine the control signal limits that provide maximum freedom of operation while protecting the system. For this work, a cyber attack is assumed to overwrite the signal to the actuator with Gaussian noise. This assumption permits the propagation of a state covariance matrix through time. Projecting the state covariance matrix on the state space reveals a confidence ellipse that approximates the reachable set. The standard deviation is found so that the confidence ellipse is tangential to the danger area in the state space. The process is applied to ship dynamics where an ellipse in the state space is transformed to an arc in the plane of motion. The technique is validated through the simulation of a ship traveling through a narrow channel while under the influence of a cyber attack.