Visible to the public Biblio

Filters: Keyword is trojan horse detection  [Clear All Filters]
2020-02-26
Inaba, Koutaro, Yoneda, Tomohiro, Kanamoto, Toshiki, Kurokawa, Atsushi, Imai, Masashi.  2019.  Hardware Trojan Insertion and Detection in Asynchronous Circuits. 2019 25th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC). :134–143.

Hardware Trojan threats caused by malicious designers and untrusted manufacturers have become one of serious issues in modern VLSI systems. In this paper, we show some experimental results to insert hardware Trojans into asynchronous circuits. As a result, the overhead of hardware Trojan insertion in asynchronous circuits may be small for malicious designers who have enough knowledge about the asynchronous circuits. In addition, we also show several Trojan detection methods using deep learning schemes which have been proposed to detect synchronous hardware Trojan in the netlist level. We apply them to asynchronous hardware Trojan circuits and show their results. They have a great potential to detect a hardware Trojan in asynchronous circuits.

Danger, Jean-Luc, Fribourg, Laurent, Kühne, Ulrich, Naceur, Maha.  2019.  LAOCOÖN: A Run-Time Monitoring and Verification Approach for Hardware Trojan Detection. 2019 22nd Euromicro Conference on Digital System Design (DSD). :269–276.

Hardware Trojan Horses and active fault attacks are a threat to the safety and security of electronic systems. By such manipulations, an attacker can extract sensitive information or disturb the functionality of a device. Therefore, several protections against malicious inclusions have been devised in recent years. A prominent technique to detect abnormal behavior in the field is run-time verification. It relies on dedicated monitoring circuits and on verification rules generated from a set of temporal properties. An important question when dealing with such protections is the effectiveness of the protection against unknown attacks. In this paper, we present a methodology based on automatic generation of monitoring and formal verification techniques that can be used to validate and analyze the quality of a set of temporal properties when used as protection against generic attackers of variable strengths.

Han, Tao, Wang, Yuze, Liu, Peng.  2019.  Hardware Trojans Detection at Register Transfer Level Based on Machine Learning. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

To accurately detect Hardware Trojans in integrated circuits design process, a machine-learning-based detection method at the register transfer level (RTL) is proposed. In this method, circuit features are extracted from the RTL source codes and a training database is built using circuits in a Hardware Trojans library. The training database is used to train an efficient detection model based on the gradient boosting algorithm. In order to expand the Hardware Trojans library for detecting new types of Hardware Trojans and update the detection model in time, a server-client mechanism is used. The proposed method can achieve 100% true positive rate and 89% true negative rate, on average, based on the benchmark from Trust-Hub.

Gountia, Debasis, Roy, Sudip.  2019.  Checkpoints Assignment on Cyber-Physical Digital Microfluidic Biochips for Early Detection of Hardware Trojans. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :16–21.

Present security study involving analysis of manipulation of individual droplets of samples and reagents by digital microfluidic biochip has remarked that the biochip design flow is vulnerable to piracy attacks, hardware Trojans attacks, overproduction, Denial-of-Service attacks, and counterfeiting. Attackers can introduce bioprotocol manipulation attacks against biochips used for medical diagnosis, biochemical analysis, and frequent diseases detection in healthcare industry. Among these attacks, hardware Trojans have created a major threatening issue in its security concern with multiple ways to crack the sensitive data or alter original functionality by doing malicious operations in biochips. In this paper, we present a systematic algorithm for the assignment of checkpoints required for error-recovery of available bioprotocols in case of hardware Trojans attacks in performing operations by biochip. Moreover, it can guide the placement and timing of checkpoints so that the result of an attack is reduced, and hence enhance the security concerns of digital microfluidic biochips. Comparative study with traditional checkpoint schemes demonstrate the superiority of the proposed algorithm without overhead of the bioprotocol completion time with higher error detection accuracy.

2019-03-15
Crouch, A., Hunter, E., Levin, P. L..  2018.  Enabling Hardware Trojan Detection and Prevention through Emulation. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1-5.

Hardware Trojans, implantable at a myriad of points within the supply chain, are difficult to detect and identify. By emulating systems on programmable hardware, the authors have created a tool from which to create and evaluate Trojan attack signatures and therefore enable better Trojan detection (for in-service systems) and prevention (for in-design systems).

Hossain, F. S., Shintani, M., Inoue, M., Orailoglu, A..  2018.  Variation-Aware Hardware Trojan Detection through Power Side-Channel. 2018 IEEE International Test Conference (ITC). :1-10.

A hardware Trojan (HT) denotes the malicious addition or modification of circuit elements. The purpose of this work is to improve the HT detection sensitivity in ICs using power side-channel analysis. This paper presents three detection techniques in power based side-channel analysis by increasing Trojan-to-circuit power consumption and reducing the variation effect in the detection threshold. Incorporating the three proposed methods has demonstrated that a realistic fine-grain circuit partitioning and an improved pattern set to increase HT activation chances can magnify Trojan detectability.

Cui, X., Wu, K., Karri, R..  2018.  Hardware Trojan Detection Using Path Delay Order Encoding with Process Variation Tolerance. 2018 IEEE 23rd European Test Symposium (ETS). :1-2.

The outsourcing for fabrication introduces security threats, namely hardware Trojans (HTs). Many design-for-trust (DFT) techniques have been proposed to address such threats. However, many HT detection techniques are not effective due to the dependence on golden chips, limitation of useful information available and process variations. In this paper, we data-mine on path delay information and propose a variation-tolerant path delay order encoding technique to detect HTs.

Xue, M., Bian, R., Wang, J., Liu, W..  2018.  A Co-Training Based Hardware Trojan Detection Technique by Exploiting Unlabeled ICs and Inaccurate Simulation Models. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1452-1457.

Integrated circuits (ICs) are becoming vulnerable to hardware Trojans. Most of existing works require golden chips to provide references for hardware Trojan detection. However, a golden chip is extremely difficult to obtain. In previous work, we have proposed a classification-based golden chips-free hardware Trojan detection technique. However, the algorithm in the previous work are trained by simulated ICs without considering that there may be a shift which occurs between the simulation and the silicon fabrication. It is necessary to learn from actual silicon fabrication in order to obtain an accurate and effective classification model. We propose a co-training based hardware Trojan detection technique exploiting unlabeled fabricated ICs and inaccurate simulation models, to provide reliable detection capability when facing fabricated ICs, while eliminating the need of fabricated golden chips. First, we train two classification algorithms using simulated ICs. During test-time, the two algorithms can identify different patterns in the unlabeled ICs, and thus be able to label some of these ICs for the further training of the another algorithm. Moreover, we use a statistical examination to choose ICs labeling for the another algorithm in order to help prevent a degradation in performance due to the increased noise in the labeled ICs. We also use a statistical technique for combining the hypotheses from the two classification algorithms to obtain the final decision. The theoretical basis of why the co-training method can work is also described. Experiment results on benchmark circuits show that the proposed technique can detect unknown Trojans with high accuracy (92% 97%) and recall (88% 95%).

Wang, C., Zhao, S., Wang, X., Luo, M., Yang, M..  2018.  A Neural Network Trojan Detection Method Based on Particle Swarm Optimization. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). :1-3.

Hardware Trojans (HTs) are malicious modifications of the original circuits intended to leak information or cause malfunction. Based on the Side Channel Analysis (SCA) technology, a set of hardware Trojan detection platform is designed for RTL circuits on the basis of HSPICE power consumption simulation. Principal Component Analysis (PCA) algorithm is used to reduce the dimension of power consumption data. An intelligent neural networks (NN) algorithm based on Particle Swarm Optimization (PSO) is introduced to achieve HTs recognition. Experimental results show that the detection accuracy of PSO NN method is much better than traditional BP NN method.

Bian, R., Xue, M., Wang, J..  2018.  Building Trusted Golden Models-Free Hardware Trojan Detection Framework Against Untrustworthy Testing Parties Using a Novel Clustering Ensemble Technique. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1458-1463.

As a result of the globalization of integrated circuits (ICs) design and fabrication process, ICs are becoming vulnerable to hardware Trojans. Most of the existing hardware Trojan detection works suppose that the testing stage is trustworthy. However, testing parties may conspire with malicious attackers to modify the results of hardware Trojan detection. In this paper, we propose a trusted and robust hardware Trojan detection framework against untrustworthy testing parties exploiting a novel clustering ensemble method. The proposed technique can expose the malicious modifications on Trojan detection results introduced by untrustworthy testing parties. Compared with the state-of-the-art detection methods, the proposed technique does not require fabricated golden chips or simulated golden models. The experiment results on ISCAS89 benchmark circuits show that the proposed technique can resist modifications robustly and detect hardware Trojans with decent accuracy (up to 91%).

Cozzi, M., Galliere, J., Maurine, P..  2018.  Exploiting Phase Information in Thermal Scans for Stealthy Trojan Detection. 2018 21st Euromicro Conference on Digital System Design (DSD). :573-576.

Infrared thermography has been recognized for its ability to investigate integrated circuits in a non destructive way. Coupled to lock-in correlation it has proven efficient in detecting thermal hot spots. Most of the state of the Art measurement systems are based on amplitude analysis. In this paper we propose to investigate weak thermal hot spots using the phase of infrared signals. We demonstrate that phase analysis is a formidable alternative to amplitude to detect small heat signatures. Finally, we apply our measurement platform and its detection method to the identification of stealthy hardware Trojans.

Martin, H., Entrena, L., Dupuis, S., Natale, G. Di.  2018.  A Novel Use of Approximate Circuits to Thwart Hardware Trojan Insertion and Provide Obfuscation. 2018 IEEE 24th International Symposium on On-Line Testing And Robust System Design (IOLTS). :41-42.

Hardware Trojans have become in the last decade a major threat in the Integrated Circuit industry. Many techniques have been proposed in the literature aiming at detecting such malicious modifications in fabricated ICs. For the most critical circuits, prevention methods are also of interest. The goal of such methods is to prevent the insertion of a Hardware Trojan thanks to ad-hoc design rules. In this paper, we present a novel prevention technique based on approximation. An approximate logic circuit is a circuit that performs a possibly different but closely related logic function, so that it can be used for error detection or error masking where it overlaps with the original circuit. We will show how this technique can successfully detect the presence of Hardware Trojans, with a solution that has a smaller impact than triplication.

Inoue, T., Hasegawa, K., Kobayashi, Y., Yanagisawa, M., Togawa, N..  2018.  Designing Subspecies of Hardware Trojans and Their Detection Using Neural Network Approach. 2018 IEEE 8th International Conference on Consumer Electronics - Berlin (ICCE-Berlin). :1-4.

Due to the recent technological development, home appliances and electric devices are equipped with high-performance hardware device. Since demand of hardware devices is increased, production base become internationalized to mass-produce hardware devices with low cost and hardware vendors outsource their products to third-party vendors. Accordingly, malicious third-party vendors can easily insert malfunctions (also known as "hardware Trojans'') into their products. In this paper, we design six kinds of hardware Trojans at a gate-level netlist, and apply a neural-network (NN) based hardware-Trojan detection method to them. The designed hardware Trojans are different in trigger circuits. In addition, we insert them to normal circuits, and detect hardware Trojans using a machine-learning-based hardware-Trojan detection method with neural networks. In our experiment, we learned Trojan-infected benchmarks using NN, and performed cross validation to evaluate the learned NN. The experimental results demonstrate that the average TPR (True Positive Rate) becomes 72.9%, the average TNR (True Negative Rate) becomes 90.0%.

Ye, J., Yang, Y., Gong, Y., Hu, Y., Li, X..  2018.  Grey Zone in Pre-Silicon Hardware Trojan Detection. 2018 IEEE International Test Conference in Asia (ITC-Asia). :79-84.

Pre-Silicon hardware Trojan detection has been studied for years. The most popular benchmark circuits are from the Trust-Hub. Their common feature is that the probability of activating hardware Trojans is very low. This leads to a series of machine learning based hardware Trojan detection methods which try to find the nets with low signal probability of 0 or 1. On the other hand, it is considered that, if the probability of activating hardware Trojans is high, these hardware Trojans can be easily found through behaviour simulations or during functional test. This paper explores the "grey zone" between these two opposite scenarios: if the activation probability of a hardware Trojan is not low enough for machine learning to detect it and is not high enough for behaviour simulation or functional test to find it, it can escape from detection. Experiments show the existence of such hardware Trojans, and this paper suggests a new set of hardware Trojan benchmark circuits for future study.

2018-04-11
Wang, Q., Geiger, R. L..  2017.  Visible but Transparent Hardware Trojans in Clock Generation Circuits. 2017 IEEE National Aerospace and Electronics Conference (NAECON). :354–357.

Hardware Trojans that can be easily embedded in synchronous clock generation circuits typical of what are used in large digital systems are discussed. These Trojans are both visible and transparent. Since they are visible, they will penetrate split-lot manufacturing security methods and their transparency will render existing detection methods ineffective.

Alsaiari, U., Gebali, F., Abd-El-Barr, M..  2017.  Programmable Assertion Checkers for Hardware Trojan Detection. 2017 1st Conference on PhD Research in Microelectronics and Electronics Latin America (PRIME-LA). :1–4.

Due to the increase in design complexity and cost of VLSI chips, a number of design houses outsource manufacturing and import designs in a way to reduce the cost. This results in a decrease of the authenticity and security of the manufactured product. Since product development involves outside sources, circuit designers can not guarantee that their hardware has not been altered. It is often possible that attackers include additional hardware in order to gain privileges over the original circuit or cause damage to the product. These added circuits are called ``Hardware Trojans''. In this paper, we investigate introducing necessary modules needed for detection of hardware Trojans. We also introduce necessary programmable logic fabric that can be used in the implementation of the hardware assertion checkers. Our target is to utilize the provided programable fabric in a System on Chip (SoC) and optimize the hardware assertion to cover the detection of most hardware trojans in each core of the target SoC.

K, S. K., Sahoo, S., Mahapatra, A., Swain, A. K., Mahapatra, K. K..  2017.  Analysis of Side-Channel Attack AES Hardware Trojan Benchmarks against Countermeasures. 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :574–579.

Hardware Trojan (HT) is one of the well known hardware security issue in research community in last one decade. HT research is mainly focused on HT detection, HT defense and designing novel HT's. HT's are inserted by an adversary for leaking secret data, denial of service attacks etc. Trojan benchmark circuits for processors, cryptography and communication protocols from Trust-hub are widely used in HT research. And power analysis based side channel attacks and designing countermeasures against side channel attacks is a well established research area. Trust-Hub provides a power based side-channel attack promoting Advanced Encryption Standard (AES) HT benchmarks for research. In this work, we analyze the strength of AES HT benchmarks in the presence well known side-channel attack countermeasures. Masking, Random delay insertion and tweaking the operating frequency of clock used in sensitive operations are applied on AES benchmarks. Simulation and power profiling studies confirm that side-channel promoting HT benchmarks are resilient against these selected countermeasures and even in the presence of these countermeasures; an adversary can get the sensitive data by triggering the HT.

Esirci, F. N., Bayrakci, A. A..  2017.  Hardware Trojan Detection Based on Correlated Path Delays in Defiance of Variations with Spatial Correlations. Design, Automation Test in Europe Conference Exhibition (DATE), 2017. :163–168.

Hardware Trojan (HT) detection methods based on the side channel analysis deeply suffer from the process variations. In order to suppress the effect of the variations, we devise a method that smartly selects two highly correlated paths for each interconnect (edge) that is suspected to have an HT on it. First path is the shortest one passing through the suspected edge and the second one is a path that is highly correlated with the first one. Delay ratio of these paths avails the detection of the HT inserted circuits. Test results reveal that the method enables the detection of even the minimally invasive Trojans in spite of both inter and intra die variations with the spatial correlations.

Hasegawa, K., Yanagisawa, M., Togawa, N..  2017.  Trojan-Feature Extraction at Gate-Level Netlists and Its Application to Hardware-Trojan Detection Using Random Forest Classifier. 2017 IEEE International Symposium on Circuits and Systems (ISCAS). :1–4.

Recently, due to the increase of outsourcing in IC design, it has been reported that malicious third-party vendors often insert hardware Trojans into their ICs. How to detect them is a strong concern in IC design process. The features of hardware-Trojan infected nets (or Trojan nets) in ICs often differ from those of normal nets. To classify all the nets in netlists designed by third-party vendors into Trojan ones and normal ones, we have to extract effective Trojan features from Trojan nets. In this paper, we first propose 51 Trojan features which describe Trojan nets from netlists. Based on the importance values obtained from the random forest classifier, we extract the best set of 11 Trojan features out of the 51 features which can effectively detect Trojan nets, maximizing the F-measures. By using the 11 Trojan features extracted, the machine-learning based hardware Trojan classifier has achieved at most 100% true positive rate as well as 100% true negative rate in several TrustHUB benchmarks and obtained the average F-measure of 74.6%, which realizes the best values among existing machine-learning-based hardware-Trojan detection methods.

Cornell, N., Nepal, K..  2017.  Combinational Hardware Trojan Detection Using Logic Implications. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). :571–574.

This paper provides a proof-of-concept demonstration of the potential benefit of using logical implications for detection of combinational hardware trojans. Using logic simulation, valid logic implications are selected and added to to the checker circuitry to detect payload delivery by a combinational hardware trojan. Using combinational circuits from the ISCAS benchmark suite, and a modest hardware budget for the checker, simulation results show that the probability of a trojan escaping detection using our approach was only 16%.

Khalid, F., Hasan, S. R., Hasan, O., Awwadl, F..  2017.  Behavior Profiling of Power Distribution Networks for Runtime Hardware Trojan Detection. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). :1316–1319.

Runtime hardware Trojan detection techniques are required in third party IP based SoCs as a last line of defense. Traditional techniques rely on golden data model or exotic signal processing techniques such as utilizing Choas theory or machine learning. Due to cumbersome implementation of such techniques, it is highly impractical to embed them on the hardware, which is a requirement in some mission critical applications. In this paper, we propose a methodology that generates a digital power profile during the manufacturing test phase of the circuit under test. A simple processing mechanism, which requires minimal computation of measured power signals, is proposed. For the proof of concept, we have applied the proposed methodology on a classical Advanced Encryption Standard circuit with 21 available Trojans. The experimental results show that the proposed methodology is able to detect 75% of the intrusions with the potential of implementing the detection mechanism on-chip with minimal overhead compared to the state-of-the-art techniques.

Matrosova, A., Mitrofanov, E., Ostanin, S., Nikolaeva, E..  2017.  Detection and Masking of Trojan Circuits in Sequential Logic. 2017 IEEE East-West Design Test Symposium (EWDTS). :1–4.

A technique of finding a set of sequential circuit nodes in which Trojan Circuits (TC) may be implanted is suggested. The technique is based on applying the precise (not heuristic) random estimations of internal node observability and controllability. Getting the estimations we at the same time derive and compactly represent all sequential circuit full states (depending on input and state variables) in which of that TC may be switched on. It means we obtain precise description of TC switch on area for the corresponding internal node v. The estimations are computed with applying a State Transition Graph (STG) description, if we suppose that TC may be inserted out of the working area (out of the specification) of the sequential circuit. Reduced Ordered Binary Decision Diagrams (ROBDDs) for the combinational part and its fragments are applied for getting the estimations by means of operations on ROBDDs. Techniques of masking TCs are proposed. Masking sub-circuits overhead is appreciated.

Nahiyan, A., Sadi, M., Vittal, R., Contreras, G., Forte, D., Tehranipoor, M..  2017.  Hardware Trojan Detection through Information Flow Security Verification. 2017 IEEE International Test Conference (ITC). :1–10.

Semiconductor design houses are increasingly becoming dependent on third party vendors to procure intellectual property (IP) and meet time-to-market constraints. However, these third party IPs cannot be trusted as hardware Trojans can be maliciously inserted into them by untrusted vendors. While different approaches have been proposed to detect Trojans in third party IPs, their limitations have not been extensively studied. In this paper, we analyze the limitations of the state-of-the-art Trojan detection techniques and demonstrate with experimental results how to defeat these detection mechanisms. We then propose a Trojan detection framework based on information flow security (IFS) verification. Our framework detects violation of IFS policies caused by Trojans without the need of white-box knowledge of the IP. We experimentally validate the efficacy of our proposed technique by accurately identifying Trojans in the trust-hub benchmarks. We also demonstrate that our technique does not share the limitations of the previously proposed Trojan detection techniques.

Abaid, Z., Kaafar, M. A., Jha, S..  2017.  Early Detection of In-the-Wild Botnet Attacks by Exploiting Network Communication Uniformity: An Empirical Study. 2017 IFIP Networking Conference (IFIP Networking) and Workshops. :1–9.

Distributed attacks originating from botnet-infected machines (bots) such as large-scale malware propagation campaigns orchestrated via spam emails can quickly affect other network infrastructures. As these attacks are made successful only by the fact that hundreds of infected machines engage in them collectively, their damage can be avoided if machines infected with a common botnet can be detected early rather than after an attack is launched. Prior studies have suggested that outgoing bot attacks are often preceded by other ``tell-tale'' malicious behaviour, such as communication with botnet controllers (C&C servers) that command botnets to carry out attacks. We postulate that observing similar behaviour occuring in a synchronised manner across multiple machines is an early indicator of a widespread infection of a single botnet, leading potentially to a large-scale, distributed attack. Intuitively, if we can detect such synchronised behaviour early enough on a few machines in the network, we can quickly contain the threat before an attack does any serious damage. In this work we present a measurement-driven analysis to validate this intuition. We empirically analyse the various stages of malicious behaviour that are observed in real botnet traffic, and carry out the first systematic study of the network behaviour that typically precedes outgoing bot attacks and is synchronised across multiple infected machines. We then implement as a proof-of-concept a set of analysers that monitor synchronisation in botnet communication to generate early infection and attack alerts. We show that with this approach, we can quickly detect nearly 80% of real-world spamming and port scanning attacks, and even demonstrate a novel capability of preventing these attacks altogether by predicting them before they are launched.

Hossain, F. S., Yoneda, T., Shintani, M., Inoue, M., Orailoglo, A..  2017.  Intra-Die-Variation-Aware Side Channel Analysis for Hardware Trojan Detection. 2017 IEEE 26th Asian Test Symposium (ATS). :52–57.

High detection sensitivity in the presence of process variation is a key challenge for hardware Trojan detection through side channel analysis. In this work, we present an efficient Trojan detection approach in the presence of elevated process variations. The detection sensitivity is sharpened by 1) comparing power levels from neighboring regions within the same chip so that the two measured values exhibit a common trend in terms of process variation, and 2) generating test patterns that toggle each cell multiple times to increase Trojan activation probability. Detection sensitivity is analyzed and its effectiveness demonstrated by means of RPD (relative power difference). We evaluate our approach on ISCAS'89 and ITC'99 benchmarks and the AES-128 circuit for both combinational and sequential type Trojans. High detection sensitivity is demonstrated by analysis on RPD under a variety of process variation levels and experiments for Trojan inserted circuits.