Visible to the public Biblio

Filters: Keyword is defense strategies  [Clear All Filters]
2021-03-30
Ashiku, L., Dagli, C..  2020.  Agent Based Cybersecurity Model for Business Entity Risk Assessment. 2020 IEEE International Symposium on Systems Engineering (ISSE). :1—6.

Computer networks and surging advancements of innovative information technology construct a critical infrastructure for network transactions of business entities. Information exchange and data access though such infrastructure is scrutinized by adversaries for vulnerabilities that lead to cyber-attacks. This paper presents an agent-based system modelling to conceptualize and extract explicit and latent structure of the complex enterprise systems as well as human interactions within the system to determine common vulnerabilities of the entity. The model captures emergent behavior resulting from interactions of multiple network agents including the number of workstations, regular, administrator and third-party users, external and internal attacks, defense mechanisms for the network setting, and many other parameters. A risk-based approach to modelling cybersecurity of a business entity is utilized to derive the rate of attacks. A neural network model will generalize the type of attack based on network traffic features allowing dynamic state changes. Rules of engagement to generate self-organizing behavior will be leveraged to appoint a defense mechanism suitable for the attack-state of the model. The effectiveness of the model will be depicted by time-state chart that shows the number of affected assets for the different types of attacks triggered by the entity risk and the time it takes to revert into normal state. The model will also associate a relevant cost per incident occurrence that derives the need for enhancement of security solutions.

2021-03-29
Xu, Z., Easwaran, A..  2020.  A Game-Theoretic Approach to Secure Estimation and Control for Cyber-Physical Systems with a Digital Twin. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :20–29.
Cyber-Physical Systems (CPSs) play an increasingly significant role in many critical applications. These valuable applications attract various sophisticated attacks. This paper considers a stealthy estimation attack, which aims to modify the state estimation of the CPSs. The intelligent attackers can learn defense strategies and use clandestine attack strategies to avoid detection. To address the issue, we design a Chi-square detector in a Digital Twin (DT), which is an online digital model of the physical system. We use a Signaling Game with Evidence (SGE) to find the optimal attack and defense strategies. Our analytical results show that the proposed defense strategies can mitigate the impact of the attack on the physical estimation and guarantee the stability of the CPSs. Finally, we use an illustrative application to evaluate the performance of the proposed framework.
2020-08-07
Dilmaghani, Saharnaz, Brust, Matthias R., Danoy, Grégoire, Cassagnes, Natalia, Pecero, Johnatan, Bouvry, Pascal.  2019.  Privacy and Security of Big Data in AI Systems: A Research and Standards Perspective. 2019 IEEE International Conference on Big Data (Big Data). :5737—5743.

The huge volume, variety, and velocity of big data have empowered Machine Learning (ML) techniques and Artificial Intelligence (AI) systems. However, the vast portion of data used to train AI systems is sensitive information. Hence, any vulnerability has a potentially disastrous impact on privacy aspects and security issues. Nevertheless, the increased demands for high-quality AI from governments and companies require the utilization of big data in the systems. Several studies have highlighted the threats of big data on different platforms and the countermeasures to reduce the risks caused by attacks. In this paper, we provide an overview of the existing threats which violate privacy aspects and security issues inflicted by big data as a primary driving force within the AI/ML workflow. We define an adversarial model to investigate the attacks. Additionally, we analyze and summarize the defense strategies and countermeasures of these attacks. Furthermore, due to the impact of AI systems in the market and the vast majority of business sectors, we also investigate Standards Developing Organizations (SDOs) that are actively involved in providing guidelines to protect the privacy and ensure the security of big data and AI systems. Our far-reaching goal is to bridge the research and standardization frame to increase the consistency and efficiency of AI systems developments guaranteeing customer satisfaction while transferring a high degree of trustworthiness.

2020-05-15
Lian, Mengyun, Wang, Jian, Lu, Jinzhi.  2018.  A New Hardware Logic Circuit for Evaluating Multi-Processor Chip Security. 2018 Eighth International Conference on Instrumentation Measurement, Computer, Communication and Control (IMCCC). :1571—1574.
NoC (Network-on-Chip) is widely considered and researched by academic communities as a new inter-core interconnection method that replaces the bus. Nowadays, the complexity of on-chip systems is increasing, requiring better communication performance and scalability. Therefore, the optimization of communication performance has become one of the research hotspots. While the NoC is rapidly developing, it is threatened by hardware Trojans inserted during the design or manufacturing processes. This leads to that the attackers can exploit NoC's vulnerability to attack the on-chip systems. To solve the problem, we design and implement a replay-type hardware Trojan inserted into the NoC, aiming to provide a benchmark test set to promote the defense strategies for NoC hardware security. The experiment proves that the power consumption of the designed Trojan accounts for less than one thousandth of the entire NoC power consumption and area. Besides, simulation experiments reveal that this replaytype hardware Trojan can reduce the network throughput.
2019-03-28
Sahabandu, D., Xiao, B., Clark, A., Lee, S., Lee, W., Poovendran, R..  2018.  DIFT Games: Dynamic Information Flow Tracking Games for Advanced Persistent Threats. 2018 IEEE Conference on Decision and Control (CDC). :1136-1143.
Dynamic Information Flow Tracking (DIFT) has been proposed to detect stealthy and persistent cyber attacks that evade existing defenses such as firewalls and signature-based antivirus systems. A DIFT defense taints and tracks suspicious information flows across the network in order to identify possible attacks, at the cost of additional memory overhead for tracking non-adversarial information flows. In this paper, we present the first analytical model that describes the interaction between DIFT and adversarial information flows, including the probability that the adversary evades detection and the performance overhead of the defense. Our analytical model consists of a multi-stage game, in which each stage represents a system process through which the information flow passes. We characterize the optimal strategies for both the defense and adversary, and derive efficient algorithms for computing the strategies. Our results are evaluated on a realworld attack dataset obtained using the Refinable Attack Investigation (RAIN) framework, enabling us to draw conclusions on the optimal adversary and defense strategies, as well as the effect of valid information flows on the interaction between adversary and defense.
2018-07-06
Zhang, R., Zhu, Q..  2017.  A game-theoretic defense against data poisoning attacks in distributed support vector machines. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). :4582–4587.

With a large number of sensors and control units in networked systems, distributed support vector machines (DSVMs) play a fundamental role in scalable and efficient multi-sensor classification and prediction tasks. However, DSVMs are vulnerable to adversaries who can modify and generate data to deceive the system to misclassification and misprediction. This work aims to design defense strategies for DSVM learner against a potential adversary. We use a game-theoretic framework to capture the conflicting interests between the DSVM learner and the attacker. The Nash equilibrium of the game allows predicting the outcome of learning algorithms in adversarial environments, and enhancing the resilience of the machine learning through dynamic distributed algorithms. We develop a secure and resilient DSVM algorithm with rejection method, and show its resiliency against adversary with numerical experiments.

2015-04-30
Anwar, Z., Malik, A.W..  2014.  Can a DDoS Attack Meltdown My Data Center? A Simulation Study and Defense Strategies Communications Letters, IEEE. 18:1175-1178.

The goal of this letter is to explore the extent to which the vulnerabilities plaguing the Internet, particularly susceptibility to distributed denial-of-service (DDoS) attacks, impact the Cloud. DDoS has been known to disrupt Cloud services, but could it do worse by permanently damaging server and switch hardware? Services are hosted in data centers with thousands of servers generating large amounts of heat. Heating, ventilation, and air-conditioning (HVAC) systems prevent server downtime due to overheating. These are remotely managed using network management protocols that are susceptible to network attacks. Recently, Cloud providers have experienced outages due to HVAC malfunctions. Our contributions include a network simulation to study the feasibility of such an attack motivated by our experiences of such a security incident in a real data center. It demonstrates how a network simulator can study the interplay of the communication and thermal properties of a network and help prevent the Cloud provider's worst nightmare: meltdown of the data center as a result of a DDoS attack.