Biblio
Nowadays, although it is much more convenient to obtain news with social media and various news platforms, the emergence of all kinds of fake news has become a headache and urgent problem that needs to be solved. Currently, the fake news recognition algorithm for fake news mainly uses GCN, including some other niche algorithms such as GRU, CNN, etc. Although all fake news verification algorithms can reach quite a high accuracy with sufficient datasets, there is still room for improvement for unsupervised learning and semi-supervised. This article finds that the accuracy of the GCN method for fake news detection is basically about 85% through comparison with other neural network models, which is satisfactory, and proposes that the current field lacks a unified training dataset, and that in the future fake news detection models should focus more on semi-supervised learning and unsupervised learning.
Social media has beneficial and detrimental impacts on social life. The vast distribution of false information on social media has become a worldwide threat. As a result, the Fake News Detection System in Social Networks has risen in popularity and is now considered an emerging research area. A centralized training technique makes it difficult to build a generalized model by adapting numerous data sources. In this study, we develop a decentralized Deep Learning model using Federated Learning (FL) for fake news detection. We utilize an ISOT fake news dataset gathered from "Reuters.com" (N = 44,898) to train the deep learning model. The performance of decentralized and centralized models is then assessed using accuracy, precision, recall, and F1-score measures. In addition, performance was measured by varying the number of FL clients. We identify the high accuracy of our proposed decentralized FL technique (accuracy, 99.6%) utilizing fewer communication rounds than in previous studies, even without employing pre-trained word embedding. The highest effects are obtained when we compare our model to three earlier research. Instead of a centralized method for false news detection, the FL technique may be used more efficiently. The use of Blockchain-like technologies can improve the integrity and validity of news sources.
ISSN: 2577-1647
Fake news is a new phenomenon that promotes misleading information and fraud via internet social media or traditional news sources. Fake news is readily manufactured and transmitted across numerous social media platforms nowadays, and it has a significant influence on the real world. It is vital to create effective algorithms and tools for detecting misleading information on social media platforms. Most modern research approaches for identifying fraudulent information are based on machine learning, deep learning, feature engineering, graph mining, image and video analysis, and newly built datasets and online services. There is a pressing need to develop a viable approach for readily detecting misleading information. The deep learning LSTM and Bi-LSTM model was proposed as a method for detecting fake news, In this work. First, the NLTK toolkit was used to remove stop words, punctuation, and special characters from the text. The same toolset is used to tokenize and preprocess the text. Since then, GLOVE word embeddings have incorporated higher-level characteristics of the input text extracted from long-term relationships between word sequences captured by the RNN-LSTM, Bi-LSTM model to the preprocessed text. The proposed model additionally employs dropout technology with Dense layers to improve the model's efficiency. The proposed RNN Bi-LSTM-based technique obtains the best accuracy of 94%, and 93% using the Adam optimizer and the Binary cross-entropy loss function with Dropout (0.1,0.2), Once the Dropout range increases it decreases the accuracy of the model as it goes 92% once Dropout (0.3).
False news has become widespread in the last decade in political, economic, and social dimensions. This has been aided by the deep entrenchment of social media networking in these dimensions. Facebook and Twitter have been known to influence the behavior of people significantly. People rely on news/information posted on their favorite social media sites to make purchase decisions. Also, news posted on mainstream and social media platforms has a significant impact on a particular country’s economic stability and social tranquility. Therefore, there is a need to develop a deceptive system that evaluates the news to avoid the repercussions resulting from the rapid dispersion of fake news on social media platforms and other online platforms. To achieve this, the proposed system uses the preprocessing stage results to assign specific vectors to words. Each vector assigned to a word represents an intrinsic characteristic of the word. The resulting word vectors are then applied to RNN models before proceeding to the LSTM model. The output of the LSTM is used to determine whether the news article/piece is fake or otherwise.
Recently, social networks have become more popular owing to the capability of connecting people globally and sharing videos, images and various types of data. A major security issue in social media is the existence of fake accounts. It is a phenomenon that has fake accounts that can be frequently utilized by mischievous users and entities, which falsify, distribute, and duplicate fake news and publicity. As the fake news resulted in serious consequences, numerous research works have focused on the design of automated fake accounts and fake news detection models. In this aspect, this study designs a hyperparameter tuned deep learning based automated fake news detection (HDL-FND) technique. The presented HDL-FND technique accomplishes the effective detection and classification of fake news. Besides, the HDLFND process encompasses a three stage process namely preprocessing, feature extraction, and Bi-Directional Long Short Term Memory (BiLSTM) based classification. The correct way of demonstrating the promising performance of the HDL-FND technique, a sequence of replications were performed on the available Kaggle dataset. The investigational outcomes produce improved performance of the HDL-FND technique in excess of the recent approaches in terms of diverse measures.
The rise of social media has brought the rise of fake news and this fake news comes with negative consequences. With fake news being such a huge issue, efforts should be made to identify any forms of fake news however it is not so simple. Manually identifying fake news can be extremely subjective as determining the accuracy of the information in a story is complex and difficult to perform, even for experts. On the other hand, an automated solution would require a good understanding of NLP which is also complex and may have difficulties producing an accurate output. Therefore, the main problem focused on this project is the viability of developing a system that can effectively and accurately detect and identify fake news. Finding a solution would be a significant benefit to the media industry, particularly the social media industry as this is where a large proportion of fake news is published and spread. In order to find a solution to this problem, this project proposed the development of a fake news identification system using deep learning and natural language processing. The system was developed using a Word2vec model combined with a Long Short-Term Memory model in order to showcase the compatibility of the two models in a whole system. This system was trained and tested using two different dataset collections that each consisted of one real news dataset and one fake news dataset. Furthermore, three independent variables were chosen which were the number of training cycles, data diversity and vector size to analyze the relationship between these variables and the accuracy levels of the system. It was found that these three variables did have a significant effect on the accuracy of the system. From this, the system was then trained and tested with the optimal variables and was able to achieve the minimum expected accuracy level of 90%. The achieving of this accuracy levels confirms the compatibility of the LSTM and Word2vec model and their capability to be synergized into a single system that is able to identify fake news with a high level of accuracy.
ISSN: 2640-0146
Deep web refers to sites that cannot be found by search engines and makes up the 96% of the digital world. The dark web is the part of the deep web that can only be accessed through specialised tools and anonymity networks. To avoid monitoring and control, communities that seek for anonymization are moving to the dark web. In this work, we scrape five dark web forums and construct five graphs to model user connections. These networks are then studied and compared using data mining techniques and social network analysis tools; for each community we identify the key actors, we study the social connections and interactions, we observe the small world effect, and we highlight the type of discussions among the users. Our results indicate that only a small subset of users are influential, while the rapid dissemination of information and resources between users may affect behaviours and formulate ideas for future members.
Web evolution and Web 2.0 social media tools facilitate communication and support the online economy. On the other hand, these tools are actively used by extremist, terrorist and criminal groups. These malicious groups use these new communication channels, such as forums, blogs and social networks, to spread their ideologies, recruit new members, market their malicious goods and raise their funds. They rely on anonymous communication methods that are provided by the new Web. This malicious part of the web is called the “dark web”. Dark web analysis became an active research area in the last few decades, and multiple research studies were conducted in order to understand our enemy and plan for counteract. We have conducted a systematic literature review to identify the state-of-art and open research areas in dark web analysis. We have filtered the available research papers in order to obtain the most relevant work. This filtration yielded 28 studies out of 370. Our systematic review is based on four main factors: the research trends used to analyze dark web, the employed analysis techniques, the analyzed artifacts, and the accuracy and confidence of the available work. Our review results have shown that most of the dark web research relies on content analysis. Also, the results have shown that forum threads are the most analyzed artifacts. Also, the most significant observation is the lack of applying any accuracy metrics or validation techniques by most of the relevant studies. As a result, researchers are advised to consider using acceptance metrics and validation techniques in their future work in order to guarantee the confidence of their study results. In addition, our review has identified some open research areas in dark web analysis which can be considered for future research work.