Biblio
The use of risk information can help software engineers identify software components that are likely vulnerable or require extra attention when testing. Some studies have shown that the requirements risk-based approaches can be effective in improving the effectiveness of regression testing techniques. However, the risk estimation processes used in such approaches can be subjective, time-consuming, and costly. In this research, we introduce a fuzzy expert system that emulates human thinking to address the subjectivity related issues in the risk estimation process in a systematic and an efficient way and thus further improve the effectiveness of test case prioritization. Further, the required data for our approach was gathered by employing a semi-automated process that made the risk estimation process less subjective. The empirical results indicate that the new prioritization approach can improve the rate of fault detection over several existing test case prioritization techniques, while reducing threats to subjective risk estimation.
Several operational and economic factors impact the patching decisions of critical infrastructures. The constraints imposed by such factors could prevent organizations from fully remedying all of the vulnerabilities that expose their (critical) assets to risk. Therefore, an involved decision maker (e.g. security officer) has to strategically decide on the allocation of possible remediation efforts towards minimizing the inherent security risk. This, however, involves the use of comparative judgments to prioritize risks and remediation actions. Throughout this work, the security risk is quantified using the security metric Time-To-Compromise (TTC). Our main contribution is to provide a generic TTC estimator to comparatively assess the security posture of computer networks taking into account interdependencies between the network components, different adversary skill levels, and characteristics of (known and zero-day) vulnerabilities. The presented estimator relies on a stochastic TTC model and Monte Carlo simulation (MCS) techniques to account for the input data variability and inherent prediction uncertainties.
The method of choice the control parameters of a complex system based on estimates of the risks is proposed. The procedure of calculating the estimates of risks intended for a choice of rational managing directors of influences by an allocation of the group of the operating factors for the set criteria factor is considered. The purpose of choice of control parameters of the complex system is the minimization of an estimate of the risk of the functioning of the system by mean of a solution of a problem of search of an extremum of the function of many variables. The example of a choice of the operating factors in the sphere of intangible assets is given.
To manage cybersecurity risks in practice, a simple yet effective method to assess suchs risks for individual systems is needed. With time-to-compromise (TTC), McQueen et al. (2005) introduced such a metric that measures the expected time that a system remains uncompromised given a specific threat landscape. Unlike other approaches that require complex system modeling to proceed, TTC combines simplicity with expressiveness and therefore has evolved into one of the most successful cybersecurity metrics in practice. We revisit TTC and identify several mathematical and methodological shortcomings which we address by embedding all aspects of the metric into the continuous domain and the possibility to incorporate information about vulnerability characteristics and other cyber threat intelligence into the model. We propose $\beta$-TTC, a formal extension of TTC which includes information from CVSS vectors as well as a continuous attacker skill based on a $\beta$-distribution. We show that our new metric (1) remains simple enough for practical use and (2) gives more realistic predictions than the original TTC by using data from a modern and productively used vulnerability database of a national CERT.
With the ever-increasing popularity of LiDAR (Light Image Detection and Ranging) sensors, a wide range of applications such as vehicle automation and robot navigation are developed utilizing the 3D LiDAR data. Many of these applications involve remote guidance - either for safety or for the task performance - of these vehicles and robots. Research studies have exposed vulnerabilities of using LiDAR data by considering different security attack scenarios. Considering the security risks associated with the improper behavior of these applications, it has become crucial to authenticate the 3D LiDAR data that highly influence the decision making in such applications. In this paper, we propose a framework, ALERT (Authentication, Localization, and Estimation of Risks and Threats), as a secure layer in the decision support system used in the navigation control of vehicles and robots. To start with, ALERT tamper-proofs 3D LiDAR data by employing an innovative mechanism for creating and extracting a dynamic watermark. Next, when tampering is detected (because of the inability to verify the dynamic watermark), ALERT then carries out cross-modal authentication for localizing the tampered region. Finally, ALERT estimates the level of risk and threat based on the temporal and spatial nature of the attacks on LiDAR data. This estimation of risk and threats can then be incorporated into the decision support system used by ADAS (Advanced Driver Assistance System). We carried out several experiments to evaluate the efficacy of the proposed ALERT for ADAS and the experimental results demonstrate the effectiveness of the proposed approach.
Accurately modeling human decision-making in security is critical to thinking about when, why, and how to recommend that users adopt certain secure behaviors. In this work, we conduct behavioral economics experiments to model the rationality of end-user security decision-making in a realistic online experimental system simulating a bank account. We ask participants to make a financially impactful security choice, in the face of transparent risks of account compromise and benefits offered by an optional security behavior (two-factor authentication). We measure the cost and utility of adopting the security behavior via measurements of time spent executing the behavior and estimates of the participant's wage. We find that more than 50% of our participants made rational (e.g., utility optimal) decisions, and we find that participants are more likely to behave rationally in the face of higher risk. Additionally, we find that users' decisions can be modeled well as a function of past behavior (anchoring effects), knowledge of costs, and to a lesser extent, users' awareness of risks and context (R2=0.61). We also find evidence of endowment effects, as seen in other areas of economic and psychological decision-science literature, in our digital-security setting. Finally, using our data, we show theoretically that a "one-size-fits-all" emphasis on security can lead to market losses, but that adoption by a subset of users with higher risks or lower costs can lead to market gains.
Automotive systems have always been designed with safety in mind. In this regard, the functional safety standard, ISO 26262, was drafted with the intention of minimizing risk due to random hardware faults or systematic failure in design of electrical and electronic components of an automobile. However, growing complexity of a modern car has added another potential point of failure in the form of cyber or sensor attacks. Recently, researchers have demonstrated that vulnerability in vehicle's software or sensing units could enable them to remotely alter the intended operation of the vehicle. As such, in addition to safety, security should be considered as an important design goal. However, designing security solutions without the consideration of safety objectives could result in potential hazards. Consequently, in this paper we propose the notion of security for safety and show that by integrating safety conditions with our system-level security solution, which comprises of a modified Kalman filter and a Chi-squared detector, we can prevent potential hazards that could occur due to violation of safety objectives during an attack. Furthermore, with the help of a car-following case study, where the follower car is equipped with an adaptive-cruise control unit, we show that our proposed system-level security solution preserves the safety constraints and prevent collision between vehicle while under sensor attack.