Visible to the public Biblio

Filters: Keyword is power consumption  [Clear All Filters]
2023-01-20
Alkuwari, Ahmad N., Al-Kuwari, Saif, Qaraqe, Marwa.  2022.  Anomaly Detection in Smart Grids: A Survey From Cybersecurity Perspective. 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE). :1—7.
Smart grid is the next generation for power generation, consumption and distribution. However, with the introduction of smart communication in such sensitive components, major risks from cybersecurity perspective quickly emerged. This survey reviews and reports on the state-of-the-art techniques for detecting cyber attacks in smart grids, mainly through machine learning techniques.
2021-02-23
Yu, M., He, T., McDaniel, P., Burke, Q. K..  2020.  Flow Table Security in SDN: Adversarial Reconnaissance and Intelligent Attacks. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1519—1528.

The performance-driven design of SDN architectures leaves many security vulnerabilities, a notable one being the communication bottleneck between the controller and the switches. Functioning as a cache between the controller and the switches, the flow table mitigates this bottleneck by caching flow rules received from the controller at each switch, but is very limited in size due to the high cost and power consumption of the underlying storage medium. It thus presents an easy target for attacks. Observing that many existing defenses are based on simplistic attack models, we develop a model of intelligent attacks that exploit specific cache-like behaviors of the flow table to infer its internal configuration and state, and then design attack parameters accordingly. Our evaluations show that such attacks can accurately expose the internal parameters of the target flow table and cause measurable damage with the minimum effort.

2021-01-25
Sehatbakhsh, N., Yilmaz, B. B., Zajic, A., Prvulovic, M..  2020.  A New Side-Channel Vulnerability on Modern Computers by Exploiting Electromagnetic Emanations from the Power Management Unit. 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). :123—138.

This paper presents a new micro-architectural vulnerability on the power management units of modern computers which creates an electromagnetic-based side-channel. The key observations that enable us to discover this sidechannel are: 1) in an effort to manage and minimize power consumption, modern microprocessors have a number of possible operating modes (power states) in which various sub-systems of the processor are powered down, 2) for some of the transitions between power states, the processor also changes the operating mode of the voltage regulator module (VRM) that supplies power to the affected sub-system, and 3) the electromagnetic (EM) emanations from the VRM are heavily dependent on its operating mode. As a result, these state-dependent EM emanations create a side-channel which can potentially reveal sensitive information about the current state of the processor and, more importantly, the programs currently being executed. To demonstrate the feasibility of exploiting this vulnerability, we create a covert channel by utilizing the changes in the processor's power states. We show how such a covert channel can be leveraged to exfiltrate sensitive information from a secured and completely isolated (air-gapped) laptop system by placing a compact, inexpensive receiver in proximity to that system. To further show the severity of this attack, we also demonstrate how such a covert channel can be established when the target and the receiver are several meters away from each other, including scenarios where the receiver and the target are separated by a wall. Compared to the state-of-the-art, the proposed covert channel has \textbackslashtextgreater3x higher bit-rate. Finally, to demonstrate that this new vulnerability is not limited to being used as a covert channel, we demonstrate how it can be used for attacks such as keystroke logging.

2020-11-02
Das, Abhishek, Touba, Nur A..  2019.  A Graph Theory Approach towards IJTAG Security via Controlled Scan Chain Isolation. 2019 IEEE 37th VLSI Test Symposium (VTS). :1—6.

The IEEE Std. 1687 (IJTAG) was designed to provide on-chip access to the various embedded instruments (e.g. built-in self test, sensors, etc.) in complex system-on-chip designs. IJTAG facilitates access to on-chip instruments from third party intellectual property providers with hidden test-data registers. Although access to on-chip instruments provides valuable data specifically for debug and diagnosis, it can potentially expose the design to untrusted sources and instruments that can sniff and possibly manipulate the data that is being shifted through the IJTAG network. This paper provides a comprehensive protection scheme against data sniffing and data integrity attacks by selectively isolating the data flowing through the IJTAG network. The proposed scheme is modeled as a graph coloring problem to optimize the number of isolation signals required to protect the design. It is shown that combining the proposed approach with other existing schemes can also bolster the security against unauthorized user access as well. The proposed countermeasure is shown to add minimal overhead in terms of area and power consumption.

2020-10-06
Wu, Chengjun, Shan, Weiwei, Xu, Jiaming.  2019.  Dynamic Adaptation of Approximate Bit-width for CNNs based on Quantitative Error Resilience. 2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). :1—6.

As an emerging paradigm for energy-efficiency design, approximate computing can reduce power consumption through simplification of logic circuits. Although calculation errors are caused by approximate computing, their impacts on the final results can be negligible in some error resilient applications, such as Convolutional Neural Networks (CNNs). Therefore, approximate computing has been applied to CNNs to reduce the high demand for computing resources and energy. Compared with the traditional method such as reducing data precision, this paper investigates the effect of approximate computing on the accuracy and power consumption of CNNs. To optimize the approximate computing technology applied to CNNs, we propose a method for quantifying the error resilience of each neuron by theoretical analysis and observe that error resilience varies widely across different neurons. On the basic of quantitative error resilience, dynamic adaptation of approximate bit-width and the corresponding configurable adder are proposed to fully exploit the error resilience of CNNs. Experimental results show that the proposed method further improves the performance of power consumption while maintaining high accuracy. By adopting the optimal approximate bit-width for each layer found by our proposed algorithm, dynamic adaptation of approximate bit-width reduces power consumption by more than 30% and causes less than 1% loss of the accuracy for LeNet-5.

2020-09-04
Ushakova, Margarita, Ushakov, Yury, Polezhaev, Petr, Shukhman, Alexandr.  2019.  Wireless Self-Organizing Wi-Fi and Bluetooth based Network For Internet Of Things. 2019 International Conference on Engineering and Telecommunication (EnT). :1—5.
Modern Internet of Things networks are often proprietary, although based on open standards, or are built on the basis of conventional Wi-Fi network, which does not allow the use of energy-saving modes and limits the range of solutions used. The paper is devoted to the study and comparison of two solutions based on Wi-Fi and Bluetooth with the functions of a self-organizing network and switching between transmission channels. The power consumption in relation to specific actions and volumes of transmitted data is investigated; a conclusion is drawn on the conditions for the application of a particular technology.
2020-08-24
Fargo, Farah, Franza, Olivier, Tunc, Cihan, Hariri, Salim.  2019.  Autonomic Resource Management for Power, Performance, and Security in Cloud Environment. 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). :1–4.
High performance computing is widely used for large-scale simulations, designs and analysis of critical problems especially through the use of cloud computing systems nowadays because cloud computing provides ubiquitous, on-demand computing capabilities with large variety of hardware configurations including GPUs and FPGAs that are highly used for high performance computing. However, it is well known that inefficient management of such systems results in excessive power consumption affecting the budget, cooling challenges, as well as reducing reliability due to the overheating and hotspots. Furthermore, considering the latest trends in the attack scenarios and crypto-currency based intrusions, security has become a major problem for high performance computing. Therefore, to address both challenges, in this paper we present an autonomic management methodology for both security and power/performance. Our proposed approach first builds knowledge of the environment in terms of power consumption and the security tools' deployment. Next, it provisions virtual resources so that the power consumption can be reduced while maintaining the required performance and deploy the security tools based on the system behavior. Using this approach, we can utilize a wide range of secure resources efficiently in HPC system, cloud computing systems, servers, embedded systems, etc.
Gohil, Nikhil N., Vemuri, Ranga R..  2019.  Automated Synthesis of Differential Power Attack Resistant Integrated Circuits. 2019 IEEE National Aerospace and Electronics Conference (NAECON). :204–211.
Differential Power Analysis (DPA) attacks were shown to be effective in recovering the secret key information from a variety cryptographic systems. In response, several design methods, ranging from the cell level to the algorithmic level, have been proposed to defend against DPA attacks. Cell level solutions depend on DPA resistant cell designs which attempt to minimize power variance during transitions while minimizing area and power consumption. In this paper, we discuss how a differential circuit design style is incorporated into a COTS tool set, resulting in a fully automated synthesis system DPA resistant integrated circuits. Based on the Secure Differential Multiplexer Logic (SDMLp), this system can be used to synthesize complete cryptographic processors which provide strong defense against DPA while minimizing area and power overhead. We discuss how both combinational and sequential cells are incorporated in the cell library. We show the effectiveness of the tool chain by using it to automatically synthesize the layouts, from RT level Verilog specifications, of both the DES and AES encryption ICs in 90nm CMOS. In each case, we present experimental data to demonstrate DPA attack resistance and area, power and performance overhead and compare these with circuits synthesized in another differential logic called MDPL as well as standard CMOS synthesis results.
2020-06-26
Bedoui, Mouna, Bouallegue, Belgacem, Hamdi, Belgacem, Machhout, Mohsen.  2019.  An Efficient Fault Detection Method for Elliptic Curve Scalar Multiplication Montgomery Algorithm. 2019 IEEE International Conference on Design Test of Integrated Micro Nano-Systems (DTS). :1—5.

Elliptical curve cryptography (ECC) is being used more and more in public key cryptosystems. Its main advantage is that, at a given security level, key sizes are much smaller compared to classical asymmetric cryptosystems like RSA. Smaller keys imply less power consumption, less cryptographic computation and require less memory. Besides performance, security is another major problem in embedded devices. Cryptosystems, like ECC, that are considered mathematically secure, are not necessarily considered safe when implemented in practice. An attacker can monitor these interactions in order to mount attacks called fault attacks. A number of countermeasures have been developed to protect Montgomery Scalar Multiplication algorithm against fault attacks. In this work, we proposed an efficient countermeasure premised on duplication scheme and the scrambling technique for Montgomery Scalar Multiplication algorithm against fault attacks. Our approach is simple and easy to hardware implementation. In addition, we perform injection-based error simulations and demonstrate that the error coverage is about 99.996%.

2020-06-15
Gressl, Lukas, Steger, Christian, Neffe, Ulrich.  2019.  Consideration of Security Attacks in the Design Space Exploration of Embedded Systems. 2019 22nd Euromicro Conference on Digital System Design (DSD). :530–537.
Designing secure systems is a complex task, particularly for designers who are no security experts. Cyber security plays a key role in embedded systems, especially for the domain of the Internet of Things (IoT). IoT systems of this kind are becoming increasingly important in daily life as they simplify various tasks. They are usually small, either embedded into bigger systems or battery driven, and perform monitoring or one shot tasks. Thus, they are subject to manifold constraints in terms of performance, power consumption, chip area, etc. As they are continuously connected to the internet and utilize our private data to perform their tasks, they are interesting for potential attackers. Cyber security thus plays an important role for the design of an IoT system. As the usage of security measures usually increases both computation time, as well as power consumption, a conflict between these constraints must be solved. For the designers of such systems, balancing these constraints constitutes a highly complex task. In this paper we propose a novel approach for considering possible security attacks on embedded systems, simplifying the consideration of security requirements immediately at the start of the design process. We introduce a security aware design space exploration framework which based on an architectural, behavioral and security attack description, finds the optimal design for IoT systems. We also demonstrate the feasibility and the benefits of our framework based on a door access system use case.
2020-03-09
Wang, Xin, Wang, Liming, Miao, Fabiao, Yang, Jing.  2019.  SVMDF: A Secure Virtual Machine Deployment Framework to Mitigate Co-Resident Threat in Cloud. 2019 IEEE Symposium on Computers and Communications (ISCC). :1–7.

Recent studies have shown that co-resident attacks have aroused great security threat in cloud. Since hardware is shared among different tenants, malicious tenants can launch various co-resident attacks, such as side channel attacks, covert channel attacks and resource interference attacks. Existing countermeasures have their limitations and can not provide comprehensive defense against co-resident attacks. This paper combines the advantages of various countermeasures and proposes a complete co-resident threat defense solution which consists of co-resident-resistant VM allocation (CRRVA), analytic hierarchy process-based threat score mechanism (AHPTSM) and attack-aware VM reallocation (AAVR). CRRVA securely allocates VMs and also takes load balance and power consumption into consideration to make the allocation policy more practical. According to the intrinsic characteristics of co-resident attacks, AHPTSM evaluates VM's threat score which denotes the probability that a VM is suffering or conducting co-resident attacks based on analytic hierarchy process. And AAVR further migrates VMs with extremely high threat scores and separates VM pairs which are likely to be malicious to each other. Extensive experiments in CloudSim have shown that CRRVA can greatly reduce the allocation co-resident threat as well as balancing the load for both CSPs and tenants with little impact on power consumption. In addition, guided by threat score distribution, AAVR can effectively guarantee runtime co-resident security by migrating high threat score VMs with less migration cost.

2020-03-02
Takemoto, Shu, Nozaki, Yusuke, Yoshikawa, Masaya.  2019.  Statistical Power Analysis for IoT Device Oriented Encryption with Glitch Canceller. 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA). :73–76.

Big data which is collected by IoT devices is utilized in various businesses. For security and privacy, some data must be encrypted. IoT devices for encryption require not only to tamper resistance but also low latency and low power. PRINCE is one of the lowest latency cryptography. A glitch canceller reduces power consumption, although it affects tamper resistance. Therefore, this study evaluates the tamper resistance of dedicated hardware with glitch canceller for PRINCE by statistical power analysis and T-test. The evaluation experiments in this study performed on field-programmable gate array (FPGA), and the results revealed the vulnerability of dedicated hardware implementation with glitch canceller.

Nozaki, Yusuke, Yoshikawa, Masaya.  2019.  Countermeasure of Lightweight Physical Unclonable Function Against Side-Channel Attack. 2019 Cybersecurity and Cyberforensics Conference (CCC). :30–34.

In industrial internet of things, various devices are connected to external internet. For the connected devices, the authentication is very important in the viewpoint of security; therefore, physical unclonable functions (PUFs) have attracted attention as authentication techniques. On the other hand, the risk of modeling attacks on PUFs, which clone the function of PUFs mathematically, is pointed out. Therefore, a resistant-PUF such as a lightweight PUF has been proposed. However, new analytical methods (side-channel attacks: SCAs), which use side-channel information such as power or electromagnetic waves, have been proposed. The countermeasure method has also been proposed; however, an evaluation using actual devices has not been studied. Since PUFs use small production variations, the implementation evaluation is very important. Therefore, this study proposes a SCA countermeasure of the lightweight PUF. The proposed method is based on the previous studies, and maintains power consumption consistency during the generation of response. In experiments using a field programmable gate array, the measured power consumption was constant regardless of output values of the PUF could be confirmed. Then, experimental results showed that the predicted rate of the response was about 50 %, and the proposed method had a tamper resistance against SCAs.

2020-02-26
Abraham, Jacob A..  2019.  Resiliency Demands on Next Generation Critical Embedded Systems. 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :135–138.

Emerging intelligent systems have stringent constraints including cost and power consumption. When they are used in critical applications, resiliency becomes another key requirement. Much research into techniques for fault tolerance and dependability has been successfully applied to highly critical systems, such as those used in space, where cost is not an overriding constraint. Further, most resiliency techniques were focused on dealing with failures in the hardware and bugs in the software. The next generation of systems used in critical applications will also have to be tolerant to test escapes after manufacturing, soft errors and transients in the electronics, hardware bugs, hardware and software Trojans and viruses, as well as intrusions and other security attacks during operation. This paper will assess the impact of these threats on the results produced by a critical system, and proposed solutions to each of them. It is argued that run-time checks at the application-level are necessary to deal with errors in the results.

Nejat, Arash, Kazemi, Zahra, Beroulle, Vincent, Hely, David, Fazeli, Mahdi.  2019.  Restricting Switching Activity Using Logic Locking to Improve Power Analysis-Based Trojan Detection. 2019 IEEE 4th International Verification and Security Workshop (IVSW). :49–54.

Nowadays due to economic reasons most of the semiconductor companies prefer to outsource the manufacturing part of their designs to third fabrication foundries, the so-called fabs. Untrustworthy fabs can extract circuit blocks, the called intellectual properties (IPs), from the layouts and then pirate them. Such fabs are suspected of hardware Trojan (HT) threat in which malicious circuits are added to the layouts for sabotage objectives. HTs lead up to increase power consumption in HT-infected circuits. However, due to process variations, the power of HTs including few gates in million-gate circuits is not detectable in power consumption analysis (PCA). Thus, such circuits should be considered as a collection of small sub-circuits, and PCA must be individually performed for each one of them. In this article, we introduce an approach facilitating PCA-based HT detection methods. Concerning this approach, we propose a new logic locking method and algorithm. Logic locking methods and algorithm are usually employed against IP piracy. They modify circuits such that they do not correctly work without applying a correct key to. Our experiments at the gate level and post-synthesis show that the proposed locking method and algorithm increase the proportion of HT activity and consequently HT power to circuit power.

2020-02-17
Alfaleh, Faleh, Alfehaid, Haitham, Alanzy, Mohammed, Elkhediri, Salim.  2019.  Wireless Sensor Networks Security: Case study. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–4.
Wireless Sensor Networks (WSNs) are important and becoming more important as we integrate wireless sensor networks and the internet with different things, which has changed our life, and it is affected everywhere in our life like shopping, storage, live monitoring, smart home etc., called Internet of Things (IoT), as any use of the network physical devices that included in electronics, software, sensors, actuators, and connectivity which makes available these things to connect, collect and exchange data, and the most importantly thing is the accuracy of the data that has been collected in the Internet of Things, detecting sensor data with faulty readings is an important issue of secure communication and power consumption. So, requirement of energy-efficiency and integrity of information is mandatory.
2020-01-20
Rasheed, Amar, Hashemi, Ray R., Bagabas, Ayman, Young, Jeffrey, Badri, Chanukya, Patel, Keyur.  2019.  Configurable Anonymous Authentication Schemes For The Internet of Things (IoT). 2019 IEEE International Conference on RFID (RFID). :1–8.
The Internet of Things (IoT) has revolutionized the way of how pervasive computing devices communicate and disseminate information over the global network. A plethora of user data is collected and logged daily into cloud-based servers. Such data can be analyzed by the IoT infrastructure to capture users' behaviors (e.g. users' location, tagging of smart home occupancy). This brings a new set of security challenges, specifically user anonymity. Existing access control and authentication technologies failed to support user anonymity. They relied on the surrendering of the device/user authentication parameters to the trusted server, which hence could be utilized by the IoT infrastructure to track users' behavioral patterns. This paper, presents two novel configurable privacy-preserving authentication schemes. User anonymity capabilities were incorporated into our proposed authentication schemes through the implementation of two crypto-based approaches (i) Zero Knowledge Proof (ZKP) and (ii) Verifiable Common Secret Encoding (VCSE). We consider a user-oriented approach when determining user anonymity. The proposed authentication schemes are dynamically capable of supporting various levels of user privacy based on the user preferences. To validate the two schemes, they were fully implemented and deployed on an IoT testbed. We have tested the performance of each proposed schemes in terms of power consumption and computation time. Based on our performance evaluation results, the proposed ZKP-based approach provides better performance compared to the VCSE-based approach.
Wu, Di, Chen, Tianen, Chen, Chienfu, Ahia, Oghenefego, Miguel, Joshua San, Lipasti, Mikko, Kim, Younghyun.  2019.  SECO: A Scalable Accuracy Approximate Exponential Function Via Cross-Layer Optimization. 2019 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED). :1–6.

From signal processing to emerging deep neural networks, a range of applications exhibit intrinsic error resilience. For such applications, approximate computing opens up new possibilities for energy-efficient computing by producing slightly inaccurate results using greatly simplified hardware. Adopting this approach, a variety of basic arithmetic units, such as adders and multipliers, have been effectively redesigned to generate approximate results for many error-resilient applications.In this work, we propose SECO, an approximate exponential function unit (EFU). Exponentiation is a key operation in many signal processing applications and more importantly in spiking neuron models, but its energy-efficient implementation has been inadequately explored. We also introduce a cross-layer design method for SECO to optimize the energy-accuracy trade-off. At the algorithm level, SECO offers runtime scaling between energy efficiency and accuracy based on approximate Taylor expansion, where the error is minimized by optimizing parameters using discrete gradient descent at design time. At the circuit level, our error analysis method efficiently explores the design space to select the energy-accuracy-optimal approximate multiplier at design time. In tandem, the cross-layer design and runtime optimization method are able to generate energy-efficient and accurate approximate EFU designs that are up to 99.7% accurate at a power consumption of 3.73 pJ per exponential operation. SECO is also evaluated on the adaptive exponential integrate-and-fire neuron model, yielding only 0.002% timing error and 0.067% value error compared to the precise neuron model.

2019-09-11
Yin, Z., Dou, S., Bai, H., Hou, Y..  2019.  Light-Weighted Security Access Scheme of Broadband Power Line Communications for Multi-Source Information Collection. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1087–1090.

With the continuously development of smart meter-reading technologies for decades, remote information collection of electricity, water, gas and heat meters have been realized. Due to the difference of electrical interfaces and communication protocols among various types of meters, communication modes of meter terminals are not so compatible, it is difficult to realize communication optimization of electricity, water, gas and heat meters information collection services. In addition, with the development of power consumption information acquisition system, the number of acquisition terminals soars greatly and the data of terminal access is highly concurrent. Therefore, the risk of security access is increasing. This paper presents a light-weighted security access scheme of power line communication based on multi-source data acquisition of electricity, water, gas and heat meters, which separates multi-source data acquisition services and achieve services security isolation and channel security isolation. The communication reliability and security of the meter-reading service of "electricity, water, gas and heat" will be improved and the integrated meter service will be realized reliably.

2019-08-05
Pan, G., He, J., Wu, Q., Fang, R., Cao, J., Liao, D..  2018.  Automatic stabilization of Zigbee network. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). :224–227.

We present an intelligent system that focus on how to ensure the stability of ZigBee network automatically. First, we discussed on the character of ZigBee compared with WIFI. Pointed out advantage of ZigBee resides in security, stability, low power consumption and better expandability. Second, figuring out the shortcomings of ZigBee on application is that physical limitation of the frequency band and weak ability on diffraction, especially coming across a wall or a door in the actual environment of home. The third, to put forward a method which can be used to ensure the strength of ZigBee signal. The method is to detect the strength of ZigBee relay in advance. And then, to compare it with the threshold value which had been defined in previous. The threshold value of strength of ZigBee is the minimal and tolerable value which can ensure stable transmission of ZigBee. If the detected value is out of the range of threshold, system will prompt up warning message which can be used to hint user to add ZigBee reply between the original ZigBee node and ZigBee gateway.

2019-03-15
Wang, C., Zhao, S., Wang, X., Luo, M., Yang, M..  2018.  A Neural Network Trojan Detection Method Based on Particle Swarm Optimization. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). :1-3.

Hardware Trojans (HTs) are malicious modifications of the original circuits intended to leak information or cause malfunction. Based on the Side Channel Analysis (SCA) technology, a set of hardware Trojan detection platform is designed for RTL circuits on the basis of HSPICE power consumption simulation. Principal Component Analysis (PCA) algorithm is used to reduce the dimension of power consumption data. An intelligent neural networks (NN) algorithm based on Particle Swarm Optimization (PSO) is introduced to achieve HTs recognition. Experimental results show that the detection accuracy of PSO NN method is much better than traditional BP NN method.

2019-01-16
Lasso, F. F. J., Clarke, K., Nirmalathas, A..  2018.  A software-defined networking framework for IoT based on 6LoWPAN. 2018 Wireless Telecommunications Symposium (WTS). :1–7.

The software defined networking framework facilitates flexible and reliable internet of things networks by moving the network intelligence to a centralized location while enabling low power wireless network in the edge. In this paper, we present SD-WSN6Lo, a novel software-defined wireless management solution for 6LoWPAN networks that aims to reduce the management complexity in WSN's. As an example of the technique, a simulation of controlling the power consumption of sensor nodes is presented. The results demonstrate improved energy consumption of approximately 15% on average per node compared to the baseline condition.

Shirbhate, M. D., Solapure, S. S..  2018.  Improving existing 6LoWPAN RPL for content based routing. 2018 Second International Conference on Computing Methodologies and Communication (ICCMC). :632–635.

Internet of things has become a subject of interest across a different industry domain. It includes 6LoWPAN (Low-Power Wireless Personal Area Network) which is used for a variety of application including home automation, sensor networks, manufacturing and industry application etc. However, gathering such a huge amount of data from such a different domain causes a problem of traffic congestion, high reliability, high energy efficiency etc. In order to address such problems, content based routing (CBR) technique is proposed, where routing paths are decided according to the type of content. By routing the correlated data to hop nodes for processing, a higher data aggregation ratio can be obtained, which in turns reducing the traffic congestion and minimizes the energy consumption. CBR is implemented on top of existing RPL (Routing Protocol for Low Power and Lossy network) and implemented in contiki operating system using cooja simulator. The analysis are carried out on the basis average power consumption, packet delivery ratio etc.

Shi, T., Shi, W., Wang, C., Wang, Z..  2018.  Compressed Sensing based Intrusion Detection System for Hybrid Wireless Mesh Networks. 2018 International Conference on Computing, Networking and Communications (ICNC). :11–15.
As wireless mesh networks (WMNs) develop rapidly, security issue becomes increasingly important. Intrusion Detection System (IDS) is one of the crucial ways to detect attacks. However, IDS in wireless networks including WMNs brings high detection overhead, which degrades network performance. In this paper, we apply compressed sensing (CS) theory to IDS and propose a CS based IDS for hybrid WMNs. Since CS can reconstruct a sparse signal with compressive sampling, we process the detected data and construct sparse original signals. Through reconstruction algorithm, the compressive sampled data can be reconstructed and used for detecting intrusions, which reduces the detection overhead. We also propose Active State Metric (ASM) as an attack metric for recognizing attacks, which measures the activity in PHY layer and energy consumption of each node. Through intensive simulations, the results show that under 50% attack density, our proposed IDS can ensure 95% detection rate while reducing about 40% detection overhead on average.
2018-12-10
Shathanaa, R., Ramasubramanian, N..  2018.  Improving Power amp; Latency Metrics for Hardware Trojan Detection During High Level Synthesis. 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.

The globalization and outsourcing of the semiconductor industry has raised serious concerns about the trustworthiness of the hardware. Importing Third Party IP cores in the Integrated Chip design has opened gates for new form of attacks on hardware. Hardware Trojans embedded in Third Party IPs has necessitated the need for secure IC design process. Design-for-Trust techniques aimed at detection of Hardware Trojans come with overhead in terms of area, latency and power consumption. In this work, we present a Cuckoo Search algorithm based Design Space Exploration process for finding low cost hardware solutions during High Level Synthesis. The exploration is conducted with respect to datapath resource allocation for single and nested loops. The proposed algorithm is compared with existing Hardware Trojan detection mechanisms and experimental results show that the proposed algorithm is able to achieve 3x improvement in Cost when compared existing algorithms.