Hristozov, Anton, Matson, Eric, Dietz, Eric, Rogers, Marcus.
2022.
Sensor Data Protection in Cyber-Physical Systems. 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS). :855—859.
Cyber-Physical Systems (CPS) have a physical part that can interact with sensors and actuators. The data that is read from sensors and the one generated to drive actuators is crucial for the correct operation of this class of devices. Most implementations trust the data being read from sensors and the outputted data to actuators. Real-time validation of the input and output of data for any system is crucial for the safety of its operation. This paper proposes an architecture for handling this issue through smart data guards detached from sensors and controllers and acting solely on the data. This mitigates potential issues of malfunctioning sensors and intentional sensor and controller attacks. The data guards understand the expected data, can detect anomalies and can correct them in real-time. This approach adds more guarantees for fault-tolerant behavior in the presence of attacks and sensor failures.
Wang, Bo, Zhang, Zhixiong, Wang, Jingyi, Guo, Chuangxin, Hao, Jie.
2022.
Resistance Strategy of Power Cyber-Physical System under Large-Scale and Complex Faults. 2022 6th International Conference on Green Energy and Applications (ICGEA). :254—258.
In recent years, with the occurrence of climate change and various extreme events, the research on the resistance of physical information systems to large-scale complex faults is of great significance. Propose a power information system to deal with complex faults in extreme weather, establish an anti-interference framework, construct a regional anti-interference strategy based on regional load output matching and topological connectivity, and propose branch active power adjustment methods to reduce disasters. In order to resist the risk of system instability caused by overrun of branch power and phase disconnection, the improved IEEE33 node test system simulation shows that this strategy can effectively reduce the harm of large-scale and complex faults.
Lee, Hwiwon, Kim, Sosun, Kim, Huy Kang.
2022.
SoK: Demystifying Cyber Resilience Quantification in Cyber-Physical Systems. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :178—183.
Cyber-Physical System (CPS) is becoming increasingly complicated and integrated into our daily lives, laying the foundation for advanced infrastructures, commodities, and services. In this regard, operational continuity of the system is the most critical objective, and cyber resilience quantification to evaluate and enhance it has garnered attention. However, understanding of the increasingly critical cyber risks is weak, with the focus being solely on the damage that occurs in the physical domain. To address this gap, this work takes aim at shedding some light on the cyber resilience quantification of CPS. We review the numerous resilience quantification techniques presented to date through several metrics to provide systematization of knowledge (SoK). In addition, we discuss the challenges of current quantification methods and give ideas for future research that will lead to more precise cyber resilience measurements.
Rimawi, Diaeddin.
2022.
Green Resilience of Cyber-Physical Systems. 2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :105—109.
Cyber-Physical System (CPS) represents systems that join both hardware and software components to perform real-time services. Maintaining the system's reliability is critical to the continuous delivery of these services. However, the CPS running environment is full of uncertainties and can easily lead to performance degradation. As a result, the need for a recovery technique is highly needed to achieve resilience in the system, with keeping in mind that this technique should be as green as possible. This early doctorate proposal, suggests a game theory solution to achieve resilience and green in CPS. Game theory has been known for its fast performance in decision-making, helping the system to choose what maximizes its payoffs. The proposed game model is described over a real-life collaborative artificial intelligence system (CAIS), that involves robots with humans to achieve a common goal. It shows how the expected results of the system will achieve the resilience of CAIS with minimized CO2 footprint.
Vasisht, Soumya, Rahman, Aowabin, Ramachandran, Thiagarajan, Bhattacharya, Arnab, Adetola, Veronica.
2022.
Multi-fidelity Bayesian Optimization for Co-design of Resilient Cyber-Physical Systems. 2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS). :298—299.
A simulation-based optimization framework is developed to con-currently design the system and control parameters to meet de-sired performance and operational resiliency objectives. Leveraging system information from both data and models of varying fideli-ties, a rigorous probabilistic approach is employed for co-design experimentation. Significant economic benefits and resilience im-provements are demonstrated using co-design compared to existing sequential designs for cyber-physical systems.
Kumar, Vivek, Hote, Yogesh V..
2022.
Analyzing and Mitigating of Time Delay Attack (TDA) by using Fractional Filter based IMC-PID with Smith Predictor. 2022 IEEE 61st Conference on Decision and Control (CDC). :3194—3199.
In this era, with a great extent of automation and connection, modern production processes are highly prone to cyber-attacks. The sensor-controller chain becomes an obvious target for attacks because sensors are commonly used to regulate production facilities. In this research, we introduce a new control configuration for the system, which is sensitive to time delay attacks (TDA), in which data transfer from the sensor to the controller is intentionally delayed. The attackers want to disrupt and damage the system by forcing controllers to use obsolete data about the system status. In order to improve the accuracy of delay identification and prediction, as well as erroneous limit and estimation for control, a new control structure is developed by an Internal Model Control (IMC) based Proportional-Integral-Derivative (PID) scheme with a fractional filter. An additional concept is included to mitigate the effect of time delay attack, i.e., the smith predictor. Simulation studies of the established control framework have been implemented with two numerical examples. The performance assessment of the proposed method has been done based on integral square error (ISE), integral absolute error (IAE) and total variation (TV).
Carvalho, Gonçalo, Medeiros, Nadia, Madeira, Henrique, Cabral, Bruno.
2022.
A Functional FMECA Approach for the Assessment of Critical Infrastructure Resilience. 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS). :672—681.
The damage or destruction of Critical Infrastructures (CIs) affect societies’ sustainable functioning. Therefore, it is crucial to have effective methods to assess the risk and resilience of CIs. Failure Mode and Effects Analysis (FMEA) and Failure Mode Effects and Criticality Analysis (FMECA) are two approaches to risk assessment and criticality analysis. However, these approaches are complex to apply to intricate CIs and associated Cyber-Physical Systems (CPS). We provide a top-down strategy, starting from a high abstraction level of the system and progressing to cover the functional elements of the infrastructures. This approach develops from FMECA but estimates risks and focuses on assessing resilience. We applied the proposed technique to a real-world CI, predicting how possible improvement scenarios may influence the overall system resilience. The results show the effectiveness of our approach in benchmarking the CI resilience, providing a cost-effective way to evaluate plausible alternatives concerning the improvement of preventive measures.
Keller, Joseph, Paul, Shuva, Grijalva, Santiago, Mooney, Vincent J..
2022.
Experimental Setup for Grid Control Device Software Updates in Supply Chain Cyber-Security. 2022 North American Power Symposium (NAPS). :1—6.
Supply chain cyberattacks that exploit insecure third-party software are a growing concern for the security of the electric power grid. These attacks seek to deploy malicious software in grid control devices during the fabrication, shipment, installation, and maintenance stages, or as part of routine software updates. Malicious software on grid control devices may inject bad data or execute bad commands, which can cause blackouts and damage power equipment. This paper describes an experimental setup to simulate the software update process of a commercial power relay as part of a hardware-in-the-loop simulation for grid supply chain cyber-security assessment. The laboratory setup was successfully utilized to study three supply chain cyber-security use cases.
Wang, Shuangbao Paul, Arafin, Md Tanvir, Osuagwu, Onyema, Wandji, Ketchiozo.
2022.
Cyber Threat Analysis and Trustworthy Artificial Intelligence. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :86—90.
Cyber threats can cause severe damage to computing infrastructure and systems as well as data breaches that make sensitive data vulnerable to attackers and adversaries. It is therefore imperative to discover those threats and stop them before bad actors penetrating into the information systems.Threats hunting algorithms based on machine learning have shown great advantage over classical methods. Reinforcement learning models are getting more accurate for identifying not only signature-based but also behavior-based threats. Quantum mechanics brings a new dimension in improving classification speed with exponential advantage. The accuracy of the AI/ML algorithms could be affected by many factors, from algorithm, data, to prejudicial, or even intentional. As a result, AI/ML applications need to be non-biased and trustworthy.In this research, we developed a machine learning-based cyber threat detection and assessment tool. It uses two-stage (both unsupervised and supervised learning) analyzing method on 822,226 log data recorded from a web server on AWS cloud. The results show the algorithm has the ability to identify the threats with high confidence.
L, Gururaj H, C, Soundarya B, V, Janhavi, H, Lakshmi, MJ, Prassan Kumar.
2022.
Analysis of Cyber Security Attacks using Kali Linux. 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). :1—6.
In the prevailing situation, the sports like economic, industrial, cultural, social, and governmental activities are carried out in the online world. Today's international is particularly dependent on the wireless era and protective these statistics from cyber-assaults is a hard hassle. The reason for cyber-assaults is to damage thieve the credentials. In a few other cases, cyber-attacks ought to have a navy or political functions. The damages are PC viruses, facts break, DDS, and exceptional attack vectors. To this surrender, various companies use diverse answers to prevent harm because of cyberattacks. Cyber safety follows actual-time data at the modern-day-day IT data. So, far, numerous techniques have proposed with the resource of researchers around the area to prevent cyber-attacks or lessen the harm due to them. The cause of this has a look at is to survey and comprehensively evaluate the usual advances supplied around cyber safety and to analyse the traumatic situations, weaknesses, and strengths of the proposed techniques. Different sorts of attacks are taken into consideration in element. In addition, evaluation of various cyber-attacks had been finished through the platform called Kali Linux. It is predicted that the complete assessment has a have a study furnished for college students, teachers, IT, and cyber safety researchers might be beneficial.
Sundararajan, Vijay, Ghodousi, Arman, Dietz, J. Eric.
2022.
The Most Common Control Deficiencies in CMMC non-compliant DoD contractors. 2022 IEEE International Symposium on Technologies for Homeland Security (HST). :1—7.
As cyber threats become highly damaging and complex, a new cybersecurity compliance certification model has been developed by the Department of Defense (DoD) to secure its Defense Industrial Base (DIB), and communication with its private partners. These partners or contractors are obligated by the Defense Federal Acquisition Regulations (DFARS) to be compliant with the latest standards in computer and data security. The Cybersecurity Maturity Model Certification (CMMC), and it is built upon existing DFARS 252.204-7012 and the NIST SP 800–171 controls. As of 2020, the DoD has incorporated DFARS and the National Institute of Standards and Technology (NIST) recommended security practices into what is now the CMMC. This paper presents the most commonly identified Security-Control-Deficiencies (SCD) faced, the attacks mitigated by addressing these SCD, and remediations applied to 127 DoD contractors in order to bring them into compliance with the CMMC guidelines. An analysis is done on what vulnerabilities are most prominent in the companies, and remediations applied to ensure these vulnerabilities are better avoided and the DoD supply-chain is more secure from attacks.
Kumar, Rajesh.
2022.
Quantitative safety-security risk analysis of interconnected cyber-infrastructures. 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC). :100—106.
Modern day cyber-infrastructures are critically dependent on each other to provide essential services. Current frameworks typically focus on the risk analysis of an isolated infrastructure. Evaluation of potential disruptions taking the heterogeneous cyber-infrastructures is vital to note the cascading disruption vectors and determine the appropriate interventions to limit the damaging impact. This paper presents a cyber-security risk assessment framework for the interconnected cyber-infrastructures. Our methodology is designed to be comprehensive in terms of accommodating accidental incidents and malicious cyber threats. Technically, we model the functional dependencies between the different architectures using reliability block diagrams (RBDs). RBDs are convenient, yet powerful graphical diagrams, which succinctly describe the functional dependence between the system components. The analysis begins by selecting a service from the many services that are outputted by the synchronized operation of the architectures whose disruption is deemed critical. For this service, we design an attack fault tree (AFT). AFT is a recent graphical formalism that combines the two popular formalisms of attack trees and fault trees. We quantify the attack-fault tree and compute the risk metrics - the probability of a disruption and the damaging impact. For this purpose, we utilize the open source ADTool. We show the efficacy of our framework with an example outage incident.
Lois, Robert S., Cole, Daniel G..
2022.
Designing Secure and Resilient Cyber-Physical Systems Using Formal Models. 2022 Resilience Week (RWS). :1—6.
This work-in-progress paper proposes a design methodology that addresses the complexity and heterogeneity of cyber-physical systems (CPS) while simultaneously proving resilient control logic and security properties. The design methodology involves a formal methods-based approach by translating the complex control logic and security properties of a water flow CPS into timed automata. Timed automata are a formal model that describes system behaviors and properties using mathematics-based logic languages with precision. Due to the semantics that are used in developing the formal models, verification techniques, such as theorem proving and model checking, are used to mathematically prove the specifications and security properties of the CPS. This work-in-progress paper aims to highlight the need for formalizing plant models by creating a timed automata of the physical portions of the water flow CPS. Extending the time automata with control logic, network security, and privacy control processes is investigated. The final model will be formally verified to prove the design specifications of the water flow CPS to ensure efficacy and security.