Biblio
As demonstrated recently, Wireless Physical Layer Security (WPLS) has the potential to offer substantial advantages for key management for small resource-constrained and, therefore, low-cost IoT-devices, e.g., the widely applied 8-bit MCU 8051. In this paper, we present a WPLS testbed implementation for independent performance and security evaluations. The testbed is based on off-the-shelf hardware and utilizes the IEEE 802.15.4 communication standard for key extraction and secret key rate estimation in real-time. The testbed can include generically multiple transceivers to simulate legitimate parties or eavesdropper. We believe with the testbed we provide a first step to make experimental-based WPLS research results comparable. As an example, we present evaluation results of several test cases we performed, while for further information we refer to https://pls.rub.de.
Anomaly detection for cyber-security defence hasgarnered much attention in recent years providing an orthogonalapproach to traditional signature-based detection systems.Anomaly detection relies on building probability models ofnormal computer network behaviour and detecting deviationsfrom the model. Most data sets used for cyber-security havea mix of user-driven events and automated network events,which most often appears as polling behaviour. Separating theseautomated events from those caused by human activity is essentialto building good statistical models for anomaly detection. This articlepresents a changepoint detection framework for identifyingautomated network events appearing as periodic subsequences ofevent times. The opening event of each subsequence is interpretedas a human action which then generates an automated, periodicprocess. Difficulties arising from the presence of duplicate andmissing data are addressed. The methodology is demonstrated usingauthentication data from Los Alamos National Laboratory'senterprise computer network.
The large number of malicious files that are produced daily outpaces the current capacity of malware analysis and detection. For example, Intel Security Labs reported that during the second quarter of 2016, their system found more than 40M of new malware [1]. The damage of malware attacks is also increasingly devastating, as witnessed by the recent Cryptowall malware that has reportedly generated more than \$325M in ransom payments to its perpetrators [2]. In terms of defense, it has been widely accepted that the traditional approach based on byte-string signatures is increasingly ineffective, especially for new malware samples and sophisticated variants of existing ones. New techniques are therefore needed for effective defense against malware. Motivated by this problem, the paper investigates a new defense technique against malware. The technique presented in this paper is utilized for automatic identification of malware packers that are used to obfuscate malware programs. Signatures of malware packers and obfuscators are extracted from the CFGs of malware samples. Unlike conventional byte signatures that can be evaded by simply modifying one or multiple bytes in malware samples, these signatures are more difficult to evade. For example, CFG-based signatures are shown to be resilient against instruction modifications and shuffling, as a single signature is sufficient for detecting mildly different versions of the same malware. Last but not least, the process for extracting CFG-based signatures is also made automatic.
Bitcoin is a decentralized digital currency, widely used for its perceived anonymity property, and has surged in popularity in recent years. Bitcoin publishes the complete transaction history in a public ledger, under pseudonyms of users. This is an alternative way to prevent double-spending attack instead of central authority. Therefore, if pseudonyms of users are attached to their identities in real world, the anonymity of Bitcoin will be a serious vulnerability. It is necessary to enhance anonymity of Bitcoin by a coin mixing service or other modifications in Bitcoin protocol. But in a coin mixing service, the relationship among input and output addresses is not hidden from the mixing service provider. So the mixing server still has the ability to track the transaction records of Bitcoin users. To solve this problem, We present a new coin mixing scheme to ensure that the relationship between input and output addresses of any users is invisible for the mixing server. We make use of a ring signature algorithm to ensure that the mixing server can't distinguish specific transaction from all these addresses. The ring signature ensures that a signature is signed by one of its users in the ring and doesn't leak any information about who signed it. Furthermore, the scheme is fully compatible with existing Bitcoin protocol and easily to scale for large amount of users.
Botnet malware, which infects Internet-connected devices and seizes control for a remote botmaster, is a long-standing threat to Internet-connected users and systems. Botnets are used to conduct DDoS attacks, distributed computing (e.g., mining bitcoins), spread electronic spam and malware, conduct cyberwarfare, conduct click-fraud scams, and steal personal user information. Current approaches to the detection and classification of botnet malware include syntactic, or signature-based, and semantic, or context-based, detection techniques. Both methods have shortcomings and botnets remain a persistent threat. In this paper, we propose a method of botnet detection using Nonparametric Bayesian Methods.
Transport Layer Security (TLS), has become the de-facto standard for secure Internet communication. When used correctly, it provides secure data transfer, but used incorrectly, it can leave users vulnerable to attacks while giving them a false sense of security. Numerous efforts have studied the adoption of TLS (and its predecessor, SSL) and its use in the desktop ecosystem, attacks, and vulnerabilities in both desktop clients and servers. However, there is a dearth of knowledge of how TLS is used in mobile platforms. In this paper we use data collected by Lumen, a mobile measurement platform, to analyze how 7,258 Android apps use TLS in the wild. We analyze and fingerprint handshake messages to characterize the TLS APIs and libraries that apps use, and also evaluate weaknesses. We see that about 84% of apps use default OS APIs for TLS. Many apps use third-party TLS libraries; in some cases they are forced to do so because of restricted Android capabilities. Our analysis shows that both approaches have limitations, and that improving TLS security in mobile is not straightforward. Apps that use their own TLS configurations may have vulnerabilities due to developer inexperience, but apps that use OS defaults are vulnerable to certain attacks if the OS is out of date, even if the apps themselves are up to date. We also study certificate verification, and see low prevalence of security measures such as certificate pinning, even among high-risk apps such as those providing financial services, though we did observe major third-party tracking and advertisement services deploying certificate pinning.
There are currently few methods that can be applied to malware classification problems which don't require domain knowledge to apply. In this work, we develop our new SHWeL feature vector representation, by extending the recently proposed Lempel-Ziv Jaccard Distance. These SHWeL vectors improve upon LZJD's accuracy, outperform byte n-grams, and allow us to build efficient algorithms for both training (a weakness of byte n-grams) and inference (a weakness of LZJD). Furthermore, our new SHWeL method also allows us to directly tackle the class imbalance problem, which is common for malware-related tasks. Compared to existing methods like SMOTE, SHWeL provides significantly improved accuracy while reducing algorithmic complexity to O(N). Because our approach is developed without the use of domain knowledge, it can be easily re-applied to any new domain where there is a need to classify byte sequences.
It has recently become apparent that both accidental and maliciously caused randomness failures pose a real and serious threat to the security of cryptographic primitives, and in response, researchers have begone the development of primitives that provide robustness against these. In this paper, however, we focus on standardized, widely available primitives. Specifically, we analyze the RSA-OAEP encryption scheme and RSA-PSS signature schemes, specified in PKCS \#1, using the related randomness security notion introduced by Paterson et al. (PKC 2014) and its extension to signature schemes. We show that, under the RSA and $\Phi$-hiding assumptions, RSA-OAEP encryption is related randomness secure for a large class of related randomness functions in the random oracle model, as long as the recipient is honest, and remains secure even when additionally considering malicious recipients, as long as the related randomness functions does not allow the malicious recipients to efficiently compute the randomness used for the honest recipient. We furthermore show that, under the RSA assumption, the RSA-PSS signature scheme is secure for any class of related randomness functions, although with a non-tight security reduction. However, under additional, albeit somewhat restrictive assumptions on the related randomness functions and the adversary, a tight reduction can be recovered. Our results provides some reassurance regarding the use of RSA-OAEP and RSA-PSS in environments where randomness failures might be a concern. Lastly, we note that, unlike RSA-OAEP and RSA-PSS, several other schemes, including RSA-KEM, part of ISO 18033-2, and DHIES, part of IEEE P1363a, are not secure under simple repeated randomness attacks.
In this paper we conduct an empirical study with the purpose of identifying common software weaknesses of embedded devices used as part of industrial control systems in power grids. The data is gathered about the devices and software of 6 companies, ABB, General Electric, Schneider Electric, Schweitzer Engineering Laboratories, Siemens and Wind River. The study uses data from the manufacturersfi online databases, NVD, CWE and ICS CERT. We identified that the most common problems that were reported are related to the improper input validation, cryptographic issues, and programming errors.
We use model-based testing techniques to detect logical vulnerabilities in implementations of the Wi-Fi handshake. This reveals new fingerprinting techniques, multiple downgrade attacks, and Denial of Service (DoS) vulnerabilities. Stations use the Wi-Fi handshake to securely connect with wireless networks. In this handshake, mutually supported capabilities are determined, and fresh pairwise keys are negotiated. As a result, a proper implementation of the Wi-Fi handshake is essential in protecting all subsequent traffic. To detect the presence of erroneous behaviour, we propose a model-based technique that generates a set of representative test cases. These tests cover all states of the Wi-Fi handshake, and explore various edge cases in each state. We then treat the implementation under test as a black box, and execute all generated tests. Determining whether a failed test introduces a security weakness is done manually. We tested 12 implementations using this approach, and discovered irregularities in all of them. Our findings include fingerprinting mechanisms, DoS attacks, and downgrade attacks where an adversary can force usage of the insecure WPA-TKIP cipher. Finally, we explain how one of our downgrade attacks highlights incorrect claims made in the 802.11 standard.
Today, the proportion of software in society as a whole is steadily increasing. In addition to size of software increasing, the number of cases dealing with personal information is also increasing. This shows the importance of weekly software security verification. However, software security is very difficult in cases where libraries do not have source code. To solve this problem, it is necessary to develop a technique for checking existing binary security weaknesses. To this end, techniques for analyzing security weaknesses using intermediate languages are actively being discussed. In this paper, we propose a system that translate binary code to intermediate language to effectively analyze existing security weaknesses within binary code.
Due to flexibility, low cost and rapid deployment, wireless sensor networks (WSNs)have been drawing more and more interest from governments, researchers, application developers, and manufacturers in recent years. Nowadays, we are in the age of industry 4.0, in which the traditional industrial control systems will be connected with each other and provide intelligent manufacturing. Therefore, WSNs can play an extremely crucial role to monitor the environment and condition parameters for smart factories. Nevertheless, the introduction of the WSNs reveals the weakness, especially for industrial applications. Through the vulnerability of IWSNs, the latent attackers were likely to invade the information system. Risk evaluation is an overwhelmingly efficient method to reduce the risk of information system in order to an acceptable level. This paper aim to study the security issues about IWSNs as well as put forward a practical solution to evaluate the risk of IWSNs, which can guide us to make risk evaluation process and improve the security of IWSNs through appropriate countermeasures.
In this paper, an industrial testbed is proposed utilizing commercial-off-the-shelf equipment, and it is used to study the weakness of industrial Ethernet, i.e., PROFINET. The investigation is based on observation of the principles of operation of PROFINET and the functionality of industrial control systems.
Recently, Jung et al. [1] proposed a data access privilege scheme and claimed that their scheme addresses data and identity privacy as well as multi-authority, and provides data access privilege for attribute-based encryption. In this paper, we show that this scheme, and also its former and latest versions (i.e. [2] and [3] respectively) suffer from a number of weaknesses in terms of finegrained access control, users and authorities collusion attack, user authorization, and user anonymity protection. We then propose our new scheme that overcomes these shortcomings. We also prove the security of our scheme against user collusion attacks, authority collusion attacks and chosen plaintext attacks. Lastly, we show that the efficiency of our scheme is comparable with existing related schemes.
The factors that threaten electric power information network are analyzed. Aiming at the weakness of being unable to provide numerical value of risk, this paper presents the evaluation index system, the evaluation model and method of network security based on multilevel fuzzy comprehensive judgment. The steps and method of security evaluation by the synthesis evaluation model are provided. The results show that this method is effective to evaluate the risk of electric power information network.