Visible to the public Biblio

Found 12044 results

Filters: Keyword is Resiliency  [Clear All Filters]
2018-03-05
Hong, Q., Jianwei, T., Zheng, T., Wenhui, Q., Chun, L., Xi, L., Hongyu, Z..  2017.  An Information Security Risk Assessment Algorithm Based on Risk Propagation in Energy Internet. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). :1–6.

Traditional information Security Risk Assessment algorithms are mainly used for evaluating small scale of information system, not suitable for massive information systems in Energy Internet. To solve the problem, this paper proposes an Information Security Risk Algorithm based on Dynamic Risk Propagation (ISRADRP). ISRADRP firstly divides information systems in the Energy Internet into different partitions according to their logical network location. Then, ISRADRP computes each partition's risk value without considering threat propagation effect via RM algorithm. Furthermore, ISRADRP calculates inside and outside propagation risk value for each partition according to Dependency Structure Matrix. Finally, the security bottleneck of systems will be identified and the overall risk value of information system will be obtained.

Snihurov, A., Chakrian, V., Serdyuk, A..  2017.  Models of Information Security Risk Accounting in Metrics of Dynamic Routing Protocols. 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S T). :387–390.
In the article, it is proposed to improve the formulas for computing metrics of RIP, OSPF and EIGRP routing protocols by introducing an information security risk indicator of the route. This approach will allow to choose the best route in terms of Quality of Service (QoS) indicators and information security (confidentiality, integrity and availability of transmitted information).
Ehrlich, M., Wisniewski, L., Trsek, H., Mahrenholz, D., Jasperneite, J..  2017.  Automatic Mapping of Cyber Security Requirements to Support Network Slicing in Software-Defined Networks. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.
The process of digitalisation has an advanced impact on social lives, state affairs, and the industrial automation domain. Ubiquitous networks and the increased requirements in terms of Quality of Service (QoS) create the demand for future-proof network management. Therefore, new technological approaches, such as Software-Defined Networks (SDN) or the 5G Network Slicing concept, are considered. However, the important topic of cyber security has mainly been ignored in the past. Recently, this topic has gained a lot of attention due to frequently reported security related incidents, such as industrial espionage, or production system manipulations. Hence, this work proposes a concept for adding cyber security requirements to future network management paradigms. For this purpose, various security related standards and guidelines are available. However, these approaches are mainly static, require a high amount of manual efforts by experts, and need to be performed in a steady manner. Therefore, the proposed solution contains a dynamic, machine-readable, automatic, continuous, and future-proof approach to model and describe cyber security QoS requirements for the next generation network management.
Shelar, D., Sun, P., Amin, S., Zonouz, S..  2017.  Compromising Security of Economic Dispatch in Power System Operations. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :531–542.
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.
Alkalbani, A. S., Mantoro, T..  2017.  Security Comparison between Dynamic Static WSN for 5g Networks. 2017 Second International Conference on Informatics and Computing (ICIC). :1–4.
In the recent years, Wireless Sensor Networks (WSN) and its applications have obtained considerable momentum. However, security and power limits of these networks are still important matters as security and power limits remain an important problem in WSN. This paper contributes to provide a simulation-based analysis of the energy efficiency, accuracy and path length of static and dynamic wireless sensor networks for 5G environment. Results are analyzed and discussed to show the difference between these two types of sensor networks. The static networks more accurate than dynamic networks. Data move from source to destination in shortest path in dynamic networks compared to static ones.
Shu, F., Li, M., Chen, S., Wang, X., Li, F..  2017.  Research on Network Security Protection System Based on Dynamic Modeling. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1602–1605.
A dynamic modeling method for network security vulnerabilities which is composed of the design of safety evaluation model, the design of risk model of intrusion event and the design of vulnerability risk model. The model based on identification of vulnerabilities values through dynamic forms can improve the tightness between vulnerability scanning system, intrusion prevention system and security configuration verification system. Based on this model, the network protection system which is most suitable for users can be formed, and the protection capability of the network protection system can be improved.
Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Evaluating the Effectiveness of Security Metrics for Dynamic Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :277–284.

It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.

Liu, R., Verbi\v c, G., Xu, Y..  2017.  A New Reliability-Driven Intelligent System for Power System Dynamic Security Assessment. 2017 Australasian Universities Power Engineering Conference (AUPEC). :1–6.

Dynamic security assessment provides system operators with vital information for possible preventive or emergency control to prevent security problems. In some cases, power system topology change deteriorates intelligent system-based online stability assessment performance. In this paper, we propose a new online assessment scheme to improve classification performance reliability of dynamic transient stability assessment. In the new scheme, we use an intelligent system consisting an ensemble of neural networks based on extreme learning machine. A new feature selection algorithm combining filter type method RRelief-F and wrapper type method Sequential Floating Forward Selection is proposed. Boosting learning algorithm is used in intelligent system training process which leads to higher classification accuracy. Moreover, we propose a new classification rule using weighted outputs of predictors in the ensemble helps to achieve 100% transient stability prediction in our case study.

Schnepf, N., Badonnel, R., Lahmadi, A., Merz, S..  2017.  Automated Verification of Security Chains in Software-Defined Networks with Synaptic. 2017 IEEE Conference on Network Softwarization (NetSoft). :1–9.
Software-defined networks provide new facilities for deploying security mechanisms dynamically. In particular, it is possible to build and adjust security chains to protect the infrastructures, by combining different security functions, such as firewalls, intrusion detection systems and services for preventing data leakage. It is important to ensure that these security chains, in view of their complexity and dynamics, are consistent and do not include security violations. We propose in this paper an automated strategy for supporting the verification of security chains in software-defined networks. It relies on an architecture integrating formal verification methods for checking both the control and data planes of these chains, before their deployment. We describe algorithms for translating specifications of security chains into formal models that can then be verified by SMT1 solving or model checking. Our solution is prototyped as a package, named Synaptic, built as an extension of the Frenetic family of SDN programming languages. The performances of our approach are evaluated through extensive experimentations based on the CVC4, veriT, and nuXmv checkers.
Tselios, C., Politis, I., Kotsopoulos, S..  2017.  Enhancing SDN Security for IoT-Related Deployments through Blockchain. 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :303–308.

The majority of business activity of our integrated and connected world takes place in networks based on cloud computing infrastructure that cross national, geographic and jurisdictional boundaries. Such an efficient entity interconnection is made possible through an emerging networking paradigm, Software Defined Networking (SDN) that intends to vastly simplify policy enforcement and network reconfiguration in a dynamic manner. However, despite the obvious advantages this novel networking paradigm introduces, its increased attack surface compared to traditional networking deployments proved to be a thorny issue that creates skepticism when safety-critical applications are considered. Especially when SDN is used to support Internet-of-Things (IoT)-related networking elements, additional security concerns rise, due to the elevated vulnerability of such deployments to specific types of attacks and the necessity of inter-cloud communication any IoT application would require. The overall number of connected nodes makes the efficient monitoring of all entities a real challenge, that must be tackled to prevent system degradation and service outage. This position paper provides an overview of common security issues of SDN when linked to IoT clouds, describes the design principals of the recently introduced Blockchain paradigm and advocates the reasons that render Blockchain as a significant security factor for solutions where SDN and IoT are involved.

Hong, Q., Jianwei, T., Zheng, T., Wenhui, Q., Chun, L., Xi, L., Hongyu, Z..  2017.  An Information Security Risk Assessment Algorithm Based on Risk Propagation in Energy Internet. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). :1–6.
Traditional information Security Risk Assessment algorithms are mainly used for evaluating small scale of information system, not suitable for massive information systems in Energy Internet. To solve the problem, this paper proposes an Information Security Risk Algorithm based on Dynamic Risk Propagation (ISRADRP). ISRADRP firstly divides information systems in the Energy Internet into different partitions according to their logical network location. Then, ISRADRP computes each partition's risk value without considering threat propagation effect via RM algorithm. Furthermore, ISRADRP calculates inside and outside propagation risk value for each partition according to Dependency Structure Matrix. Finally, the security bottleneck of systems will be identified and the overall risk value of information system will be obtained.
Snihurov, A., Chakrian, V., Serdyuk, A..  2017.  Models of Information Security Risk Accounting in Metrics of Dynamic Routing Protocols. 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S T). :387–390.
In the article, it is proposed to improve the formulas for computing metrics of RIP, OSPF and EIGRP routing protocols by introducing an information security risk indicator of the route. This approach will allow to choose the best route in terms of Quality of Service (QoS) indicators and information security (confidentiality, integrity and availability of transmitted information).
Ehrlich, M., Wisniewski, L., Trsek, H., Mahrenholz, D., Jasperneite, J..  2017.  Automatic Mapping of Cyber Security Requirements to Support Network Slicing in Software-Defined Networks. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.
The process of digitalisation has an advanced impact on social lives, state affairs, and the industrial automation domain. Ubiquitous networks and the increased requirements in terms of Quality of Service (QoS) create the demand for future-proof network management. Therefore, new technological approaches, such as Software-Defined Networks (SDN) or the 5G Network Slicing concept, are considered. However, the important topic of cyber security has mainly been ignored in the past. Recently, this topic has gained a lot of attention due to frequently reported security related incidents, such as industrial espionage, or production system manipulations. Hence, this work proposes a concept for adding cyber security requirements to future network management paradigms. For this purpose, various security related standards and guidelines are available. However, these approaches are mainly static, require a high amount of manual efforts by experts, and need to be performed in a steady manner. Therefore, the proposed solution contains a dynamic, machine-readable, automatic, continuous, and future-proof approach to model and describe cyber security QoS requirements for the next generation network management.
Alkalbani, A. S., Mantoro, T..  2017.  Security Comparison between Dynamic Static WSN for 5g Networks. 2017 Second International Conference on Informatics and Computing (ICIC). :1–4.
In the recent years, Wireless Sensor Networks (WSN) and its applications have obtained considerable momentum. However, security and power limits of these networks are still important matters as security and power limits remain an important problem in WSN. This paper contributes to provide a simulation-based analysis of the energy efficiency, accuracy and path length of static and dynamic wireless sensor networks for 5G environment. Results are analyzed and discussed to show the difference between these two types of sensor networks. The static networks more accurate than dynamic networks. Data move from source to destination in shortest path in dynamic networks compared to static ones.
Shu, F., Li, M., Chen, S., Wang, X., Li, F..  2017.  Research on Network Security Protection System Based on Dynamic Modeling. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1602–1605.
A dynamic modeling method for network security vulnerabilities which is composed of the design of safety evaluation model, the design of risk model of intrusion event and the design of vulnerability risk model. The model based on identification of vulnerabilities values through dynamic forms can improve the tightness between vulnerability scanning system, intrusion prevention system and security configuration verification system. Based on this model, the network protection system which is most suitable for users can be formed, and the protection capability of the network protection system can be improved.
Liu, R., Verbi\v c, G., Xu, Y..  2017.  A New Reliability-Driven Intelligent System for Power System Dynamic Security Assessment. 2017 Australasian Universities Power Engineering Conference (AUPEC). :1–6.

Dynamic security assessment provides system operators with vital information for possible preventive or emergency control to prevent security problems. In some cases, power system topology change deteriorates intelligent system-based online stability assessment performance. In this paper, we propose a new online assessment scheme to improve classification performance reliability of dynamic transient stability assessment. In the new scheme, we use an intelligent system consisting an ensemble of neural networks based on extreme learning machine. A new feature selection algorithm combining filter type method RRelief-F and wrapper type method Sequential Floating Forward Selection is proposed. Boosting learning algorithm is used in intelligent system training process which leads to higher classification accuracy. Moreover, we propose a new classification rule using weighted outputs of predictors in the ensemble helps to achieve 100% transient stability prediction in our case study.

Osaiweran, A., Marincic, J., Groote, J. F..  2017.  Assessing the Quality of Tabular State Machines through Metrics. 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS). :426–433.

Software metrics are widely used to measure the quality of software and to give an early indication of the efficiency of the development process in industry. There are many well-established frameworks for measuring the quality of source code through metrics, but limited attention has been paid to the quality of software models. In this article, we evaluate the quality of state machine models specified using the Analytical Software Design (ASD) tooling. We discuss how we applied a number of metrics to ASD models in an industrial setting and report about results and lessons learned while collecting these metrics. Furthermore, we recommend some quality limits for each metric and validate them on models developed in a number of industrial projects.

Sultana, K. Z., Deo, A., Williams, B. J..  2017.  Correlation Analysis among Java Nano-Patterns and Software Vulnerabilities. 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE). :69–76.

Ensuring software security is essential for developing a reliable software. A software can suffer from security problems due to the weakness in code constructs during software development. Our goal is to relate software security with different code constructs so that developers can be aware very early of their coding weaknesses that might be related to a software vulnerability. In this study, we chose Java nano-patterns as code constructs that are method-level patterns defined on the attributes of Java methods. This study aims to find out the correlation between software vulnerability and method-level structural code constructs known as nano-patterns. We found the vulnerable methods from 39 versions of three major releases of Apache Tomcat for our first case study. We extracted nano-patterns from the affected methods of these releases. We also extracted nano-patterns from the non-vulnerable methods of Apache Tomcat, and for this, we selected the last version of three major releases (6.0.45 for release 6, 7.0.69 for release 7 and 8.0.33 for release 8) as the non-vulnerable versions. Then, we compared the nano-pattern distributions in vulnerable versus non-vulnerable methods. In our second case study, we extracted nano-patterns from the affected methods of three vulnerable J2EE web applications: Blueblog 1.0, Personalblog 1.2.6 and Roller 0.9.9, all of which were deliberately made vulnerable for testing purpose. We found that some nano-patterns such as objCreator, staticFieldReader, typeManipulator, looper, exceptions, localWriter, arrReader are more prevalent in affected methods whereas some such as straightLine are more vivid in non-affected methods. We conclude that nano-patterns can be used as the indicator of vulnerability-proneness of code.

Sugumar, G., Mathur, A..  2017.  Testing the Effectiveness of Attack Detection Mechanisms in Industrial Control Systems. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :138–145.

Industrial Control Systems (ICS) are found in critical infrastructure such as for power generation and water treatment. When security requirements are incorporated into an ICS, one needs to test the additional code and devices added do improve the prevention and detection of cyber attacks. Conducting such tests in legacy systems is a challenge due to the high availability requirement. An approach using Timed Automata (TA) is proposed to overcome this challenge. This approach enables assessment of the effectiveness of an attack detection method based on process invariants. The approach has been demonstrated in a case study on one stage of a 6- stage operational water treatment plant. The model constructed captured the interactions among components in the selected stage. In addition, a set of attacks, attack detection mechanisms, and security specifications were also modeled using TA. These TA models were conjoined into a network and implemented in UPPAAL. The models so implemented were found effective in detecting the attacks considered. The study suggests the use of TA as an effective tool to model an ICS and study its attack detection mechanisms as a complement to doing so in a real plant-operational or under design.

Cohen, A., Cohen, A., Médard, M., Gurewitz, O..  2017.  Individually-Secure Multi-Source Multicast. 2017 IEEE International Symposium on Information Theory (ISIT). :3105–3109.

The principal mission of Multi-Source Multicast (MSM) is to disseminate all messages from all sources in a network to all destinations. MSM is utilized in numerous applications. In many of them, securing the messages disseminated is critical. A common secure model is to consider a network where there is an eavesdropper which is able to observe a subset of the network links, and seek a code which keeps the eavesdropper ignorant regarding all the messages. While this is solved when all messages are located at a single source, Secure MSM (SMSM) is an open problem, and the rates required are hard to characterize in general. In this paper, we consider Individual Security, which promises that the eavesdropper has zero mutual information with each message individually. We completely characterize the rate region for SMSM under individual security, and show that such a security level is achievable at the full capacity of the network, that is, the cut-set bound is the matching converse, similar to non-secure MSM. Moreover, we show that the field size is similar to non-secure MSM and does not have to be larger due to the security constraint.

Kadhe, S., Sprintson, A..  2017.  Security for Minimum Storage Regenerating Codes and Locally Repairable Codes. 2017 IEEE International Symposium on Information Theory (ISIT). :1028–1032.

We consider the problem of designing repair efficient distributed storage systems, which are information-theoretically secure against a passive eavesdropper that can gain access to a limited number of storage nodes. We present a framework that enables design of a broad range of secure storage codes through a joint construction of inner and outer codes. As case studies, we focus on two specific families of storage codes: (i) minimum storage regenerating (MSR) codes, and (ii) maximally recoverable (MR) codes, which are a class of locally repairable codes (LRCs). The main idea of this framework is to utilize the existing constructions of storage codes to jointly design an outer coset code and inner storage code. Finally, we present a construction of an outer coset code over small field size to secure locally repairable codes presented by Tamo and Barg for the special case of an eavesdropper that can observe any subset of nodes of maximum possible size.

Baldi, M., Chiaraluce, F., Senigagliesi, L., Spalazzi, L., Spegni, F..  2017.  Security in Heterogeneous Distributed Storage Systems: A Practically Achievable Information-Theoretic Approach. 2017 IEEE Symposium on Computers and Communications (ISCC). :1021–1028.

Distributed storage systems and caching systems are becoming widespread, and this motivates the increasing interest on assessing their achievable performance in terms of reliability for legitimate users and security against malicious users. While the assessment of reliability takes benefit of the availability of well established metrics and tools, assessing security is more challenging. The classical cryptographic approach aims at estimating the computational effort for an attacker to break the system, and ensuring that it is far above any feasible amount. This has the limitation of depending on attack algorithms and advances in computing power. The information-theoretic approach instead exploits capacity measures to achieve unconditional security against attackers, but often does not provide practical recipes to reach such a condition. We propose a mixed cryptographic/information-theoretic approach with a twofold goal: estimating the levels of information-theoretic security and defining a practical scheme able to achieve them. In order to find optimal choices of the parameters of the proposed scheme, we exploit an effective probabilistic model checker, which allows us to overcome several limitations of more conventional methods.

Wang, W., Hussein, N., Gupta, A., Wang, Y..  2017.  A Regression Model Based Approach for Identifying Security Requirements in Open Source Software Development. 2017 IEEE 25th International Requirements Engineering Conference Workshops (REW). :443–446.

There are several security requirements identification methods proposed by researchers in up-front requirements engineering (RE). However, in open source software (OSS) projects, developers use lightweight representation and refine requirements frequently by writing comments. They also tend to discuss security aspect in comments by providing code snippets, attachments, and external resource links. Since most security requirements identification methods in up-front RE are based on textual information retrieval techniques, these methods are not suitable for OSS projects or just-in-time RE. In our study, we propose a new model based on logistic regression to identify security requirements in OSS projects. We used five metrics to build security requirements identification models and tested the performance of these metrics by applying those models to three OSS projects. Our results show that four out of five metrics achieved high performance in intra-project testing.

Medeiros, N., Ivaki, N., Costa, P., Vieira, M..  2017.  Software Metrics as Indicators of Security Vulnerabilities. 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE). :216–227.

Detecting software security vulnerabilities and distinguishing vulnerable from non-vulnerable code is anything but simple. Most of the time, vulnerabilities remain undisclosed until they are exposed, for instance, by an attack during the software operational phase. Software metrics are widely-used indicators of software quality, but the question is whether they can be used to distinguish vulnerable software units from the non-vulnerable ones during development. In this paper, we perform an exploratory study on software metrics, their interdependency, and their relation with security vulnerabilities. We aim at understanding: i) the correlation between software architectural characteristics, represented in the form of software metrics, and the number of vulnerabilities; and ii) which are the most informative and discriminative metrics that allow identifying vulnerable units of code. To achieve these goals, we use, respectively, correlation coefficients and heuristic search techniques. Our analysis is carried out on a dataset that includes software metrics and reported security vulnerabilities, exposed by security attacks, for all functions, classes, and files of five widely used projects. Results show: i) a strong correlation between several project-level metrics and the number of vulnerabilities, ii) the possibility of using a group of metrics, at both file and function levels, to distinguish vulnerable and non-vulnerable code with a high level of accuracy.

Carmer, Brent, Malozemoff, Alex J., Raykova, Mariana.  2017.  5Gen-C: Multi-Input Functional Encryption and Program Obfuscation for Arithmetic Circuits. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :747–764.

Program obfuscation is a powerful security primitive with many applications. White-box cryptography studies a particular subset of program obfuscation targeting keyed pseudorandom functions (PRFs), a core component of systems such as mobile payment and digital rights management. Although the white-box obfuscators currently used in practice do not come with security proofs and are thus routinely broken, recent years have seen an explosion of cryptographic techniques for obfuscation, with the goal of avoiding this build-and-break cycle. In this work, we explore in detail cryptographic program obfuscation and the related primitive of multi-input functional encryption (MIFE). In particular, we extend the 5Gen framework (CCS 2016) to support circuit-based MIFE and program obfuscation, implementing both existing and new constructions. We then evaluate and compare the efficiency of these constructions in the context of PRF obfuscation. As part of this work we (1) introduce a novel instantiation of MIFE that works directly on functions represented as arithmetic circuits, (2) use a known transformation from MIFE to obfuscation to give us an obfuscator that performs better than all prior constructions, and (3) develop a compiler for generating circuits optimized for our schemes. Finally, we provide detailed experiments, demonstrating, among other things, the ability to obfuscate a PRF with a 64-bit key and 12 bits of input (containing 62k gates) in under 4 hours, with evaluation taking around 1 hour. This is by far the most complex function obfuscated to date.