Visible to the public Biblio

Found 12044 results

Filters: Keyword is Resiliency  [Clear All Filters]
2018-02-15
Han, Jordan W., Hoe, Ong J., Wing, Joseph S., Brohi, Sarfraz N..  2017.  A Conceptual Security Approach with Awareness Strategy and Implementation Policy to Eliminate Ransomware. Proceedings of the 2017 International Conference on Computer Science and Artificial Intelligence. :222–226.

Undeterred by numerous efforts deployed by antivirus software that shields users from various security threats, ransomware is constantly evolving as technology advances. The impact includes hackers hindering the user's accessibility to their data, and the user will pay ransom to retrieve their data. Ransomware also targets multimillion-dollar organizations, and it can cause colossal data loss. The organizations could face catastrophic consequences, and business operations could be ceased. This research contributes by spreading awareness of ransomware to alert people to tackle ransomware. The solution of this research is the conceptual development of a browser extension that provides assistance to warn users of plausible dangers while surfing the Internet. It allows the users to surf the web safely. Since the contribution of this research is conceptual, we can assume that technology users will adopt the proposed idea to prevent ransomware attacks on their personal computers once the solution is fully implemented in future research.

Han, Shuchu, Hu, Yifan, Skiena, Steven, Coskun, Baris, Liu, Meizhu, Qin, Hong, Perez, Jaime.  2017.  Generating Look-alike Names For Security Challenges. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. :57–67.
Motivated by the need to automatically generate behavior-based security challenges to improve user authentication for web services, we consider the problem of large-scale construction of realistic-looking names to serve as aliases for real individuals. We aim to use these names to construct security challenges, where users are asked to identify their real contacts among a presented pool of names. We seek these look-alike names to preserve name characteristics like gender, ethnicity, and popularity, while being unlinkable back to the source individual, thereby making the real contacts not easily guessable by attackers. To achive this, we introduce the technique of distributed name embeddings, representing names in a high-dimensional space such that distance between name components reflects the degree of cultural similarity between these strings. We present different approaches to construct name embeddings from contact lists observed at a large web-mail provider, and evaluate their cultural coherence. We demonstrate that name embeddings strongly encode gender and ethnicity, as well as name popularity. We applied this algorithm to generate imitation names in email contact list challenge. Our controlled user study verified that the proposed technique reduced the attacker's success rate to 26.08%, indistinguishable from random guessing, compared to a success rate of 62.16% from previous name generation algorithms. Finally, we use these embeddings to produce an open synthetic name resource of 1 million names for security applications, constructed to respect both cultural coherence and U.S. census name frequencies.
Brkan, Maja.  2017.  AI-supported Decision-making Under the General Data Protection Regulation. Proceedings of the 16th Edition of the International Conference on Articial Intelligence and Law. :3–8.
The purpose of this paper is to analyse the rules of the General Data Protection Regulation on automated decision making in the age of Big Data and to explore how to ensure transparency of such decisions, in particular those taken with the help of algorithms. The GDPR, in its Article 22, prohibits automated individual decision-making, including profiling. On the first impression, it seems that this provision strongly protects individuals and potentially even hampers the future development of AI in decision making. However, it can be argued that this prohibition, containing numerous limitations and exceptions, looks like a Swiss cheese with giant holes in it. Moreover, in case of automated decisions involving personal data of the data subject, the GDPR obliges the controller to provide the data subject with 'meaningful information about the logic involved' (Articles 13 and 14). If we link this information to the rights of data subject, we can see that the information about the logic involved needs to enable him/her to express his/her point of view and to contest the automated decision. While this requirement fits well within the broader framework of GDPR's quest for a high level of transparency, it also raises several queries particularly in cases where the decision is taken with the help of algorithms: What exactly needs to be revealed to the data subject? How can an algorithm-based decision be explained? Apart from technical obstacles, we are facing also intellectual property and state secrecy obstacles to this 'algorithmic transparency'.
Jia, Ruoxi, Dong, Roy, Sastry, S. Shankar, Spanos, Costas J..  2017.  Privacy-enhanced Architecture for Occupancy-based HVAC Control. Proceedings of the 8th International Conference on Cyber-Physical Systems. :177–186.

Large-scale sensing and actuation infrastructures have allowed buildings to achieve significant energy savings; at the same time, these technologies introduce significant privacy risks that must be addressed. In this paper, we present a framework for modeling the trade-off between improved control performance and increased privacy risks due to occupancy sensing. More specifically, we consider occupancy-based HVAC control as the control objective and the location traces of individual occupants as the private variables. Previous studies have shown that individual location information can be inferred from occupancy measurements. To ensure privacy, we design an architecture that distorts the occupancy data in order to hide individual occupant location information while maintaining HVAC performance. Using mutual information between the individual's location trace and the reported occupancy measurement as a privacy metric, we are able to optimally design a scheme to minimize privacy risk subject to a control performance guarantee. We evaluate our framework using real-world occupancy data: first, we verify that our privacy metric accurately assesses the adversary's ability to infer private variables from the distorted sensor measurements; then, we show that control performance is maintained through simulations of building operations using these distorted occupancy readings.

Wang, Junjue, Amos, Brandon, Das, Anupam, Pillai, Padmanabhan, Sadeh, Norman, Satyanarayanan, Mahadev.  2017.  A Scalable and Privacy-Aware IoT Service for Live Video Analytics. Proceedings of the 8th ACM on Multimedia Systems Conference. :38–49.

We present OpenFace, our new open-source face recognition system that approaches state-of-the-art accuracy. Integrating OpenFace with inter-frame tracking, we build RTFace, a mechanism for denaturing video streams that selectively blurs faces according to specified policies at full frame rates. This enables privacy management for live video analytics while providing a secure approach for handling retrospective policy exceptions. Finally, we present a scalable, privacy-aware architecture for large camera networks using RTFace.

Klow, Jeffrey, Proby, Jordan, Rueben, Matthew, Sowell, Ross T., Grimm, Cindy M., Smart, William D..  2017.  Privacy, Utility, and Cognitive Load in Remote Presence Systems. Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction. :167–168.
As teleoperated robot technology becomes cheaper, more powerful, and more reliable, remotely-operated telepresence robots will become more prevalent in homes and businesses, allowing visitors and business partners to be present without the need to travel. Hindering adoption is the issue of privacy: an Internet-connected telepresence robot has the ability to spy on its local area, either for the remote operator or a third party with access to the video data. Additionally, since the remote operator may move about and manipulate objects without local-user intervention, certain typical privacy-protecting techniques such as moving objects to a different room or putting them in a cabinet may prove insufficient. In this paper, we examine the effects of three whole-image filters on the remote operator's ability to discern details while completing a navigation task.
Bittner, Daniel M., Sarwate, Anand D., Wright, Rebecca N..  2017.  Differentially Private Noisy Search with Applications to Anomaly Detection (Abstract). Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. :53–53.
We consider the problem of privacy-sensitive anomaly detection - screening to detect individuals, behaviors, areas, or data samples of high interest. What defines an anomaly is context-specific; for example, a spoofed rather than genuine user attempting to log in to a web site, a fraudulent credit card transaction, or a suspicious traveler in an airport. The unifying assumption is that the number of anomalous points is quite small with respect to the population, so that deep screening of all individual data points would potentially be time-intensive, costly, and unnecessarily invasive of privacy. Such privacy violations can raise concerns due sensitive nature of data being used, raise fears about violations of data use agreements, and make people uncomfortable with anomaly detection methods. Anomaly detection is well studied, but methods to provide anomaly detection along with privacy are less well studied. Our overall goal in this research is to provide a framework for identifying anomalous data while guaranteeing quantifiable privacy in a rigorous sense. Once identified, such anomalies could warrant further data collection and investigation, depending on the context and relevant policies. In this research, we focus on privacy protection during the deployment of anomaly detection. Our main contribution is a differentially private access mechanism for finding anomalies using a search algorithm based on adaptive noisy group testing. To achieve this, we take as our starting point the notion of group testing [1], which was most famously used to screen US military draftees for syphilis during World War II. In group testing, individuals are tested in groups to limit the number of tests. Using multiple rounds of screenings, a small number of positive individuals can be detected very efficiently. Group testing has the added benefit of providing privacy to individuals through plausible deniability - since the group tests use aggregate data, individual contributions to the test are masked by the group. We follow on these concepts by demonstrating a search model utilizing adaptive queries on aggregated group data. Our work takes the first steps toward strengthening and formalizing these privacy concepts by achieving differential privacy [2]. Differential privacy is a statistical measure of disclosure risk that captures the intuition that an individual's privacy is protected if the results of a computation have at most a very small and quantifiable dependence on that individual's data. In the last decade, there hpractical adoption underway by high-profile companies such as Apple, Google, and Uber. In order to make differential privacy meaningful in the context of a task that seeks to specifically identify some (anomalous) individuals, we introduce the notion of anomaly-restricted differential privacy. Using ideas from information theory, we show that noise can be added to group query results in a way that provides differential privacy for non-anomalous individuals and still enables efficient and accurate detection of the anomalous individuals. Our method ensures that using differentially private aggregation of groups of points, providing privacy to individuals within the group while refining the group selection to the point that we can probabilistically narrow attention to a small numbers of individuals or samples for further attention. To summarize: We introduce a new notion of anomaly-restriction differential privacy, which may be of independent interest. We provide a noisy group-based search algorithm that satisfies the anomaly-restricted differential privacy definition. We provide both theoretical and empirical analysis of our noisy search algorithm, showing that it performs well in some cases, and exhibits the usual privacy/accuracy tradeoff of differentially private mechanisms. Potential anomaly detection applications for our work might include spatial search for outliers: this would rely on new sensing technologies that can perform queries in aggregate to reveal and isolate anomalous outliers. For example, this could lead to privacy-sensitive methods for searching for outlying cell phone activity patterns or Internet activity patterns in a geographic location.
Vu, Xuan-Son, Jiang, Lili, Brändström, Anders, Elmroth, Erik.  2017.  Personality-based Knowledge Extraction for Privacy-preserving Data Analysis. Proceedings of the Knowledge Capture Conference. :44:1–44:4.
In this paper, we present a differential privacy preserving approach, which extracts personality-based knowledge to serve privacy guarantee data analysis on personal sensitive data. Based on the approach, we further implement an end-to-end privacy guarantee system, KaPPA, to provide researchers iterative data analysis on sensitive data. The key challenge for differential privacy is determining a reasonable amount of privacy budget to balance privacy preserving and data utility. Most of the previous work applies unified privacy budget to all individual data, which leads to insufficient privacy protection for some individuals while over-protecting others. In KaPPA, the proposed personality-based privacy preserving approach automatically calculates privacy budget for each individual. Our experimental evaluations show a significant trade-off of sufficient privacy protection and data utility.
van Do, Thanh, Engelstad, Paal, Feng, Boning, Do, Van Thuan.  2017.  A Near Real Time SMS Grey Traffic Detection. Proceedings of the 6th International Conference on Software and Computer Applications. :244–249.
Lately, mobile operators experience threats from SMS grey routes which are used by fraudsters to evade SMS fees and to deny them millions in revenues. But more serious are the threats to the user's security and privacy and consequently the operator's reputation. Therefore, it is crucial for operators to have adequate solutions to protect both their network and their customers against this kind of fraud. Unfortunately, so far there is no sufficiently efficient countermeasure against grey routes. This paper proposes a near real time SMS grey traffic detection which makes use of Counting Bloom Filters combined with blacklist and whitelist to detect SMS grey traffic on the fly and to block them. The proposed detection has been implemented and proved to be quite efficient. The paper provides also comprehensive explanation of SMS grey routes and the challenges in their detection. The implementation and verification are also described thoroughly.
Chanyaswad, T., Al, M., Chang, J. M., Kung, S. Y..  2017.  Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification. 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP). :1–6.

In machine learning, feature engineering has been a pivotal stage in building a high-quality predictor. Particularly, this work explores the multiple Kernel Discriminant Component Analysis (mKDCA) feature-map and its variants. However, seeking the right subset of kernels for mKDCA feature-map can be challenging. Therefore, we consider the problem of kernel selection, and propose an algorithm based on Differential Mutual Information (DMI) and incremental forward search. DMI serves as an effective metric for selecting kernels, as is theoretically supported by mutual information and Fisher's discriminant analysis. On the other hand, incremental forward search plays a role in removing redundancy among kernels. Finally, we illustrate the potential of the method via an application in privacy-aware classification, and show on three mobile-sensing datasets that selecting an effective set of kernels for mKDCA feature-maps can enhance the utility classification performance, while successfully preserve the data privacy. Specifically, the results show that the proposed DMI forward search method can perform better than the state-of-the-art, and, with much smaller computational cost, can perform as well as the optimal, yet computationally expensive, exhaustive search.

Phan, N., Wu, X., Hu, H., Dou, D..  2017.  Adaptive Laplace Mechanism: Differential Privacy Preservation in Deep Learning. 2017 IEEE International Conference on Data Mining (ICDM). :385–394.

In this paper, we focus on developing a novel mechanism to preserve differential privacy in deep neural networks, such that: (1) The privacy budget consumption is totally independent of the number of training steps; (2) It has the ability to adaptively inject noise into features based on the contribution of each to the output; and (3) It could be applied in a variety of different deep neural networks. To achieve this, we figure out a way to perturb affine transformations of neurons, and loss functions used in deep neural networks. In addition, our mechanism intentionally adds "more noise" into features which are "less relevant" to the model output, and vice-versa. Our theoretical analysis further derives the sensitivities and error bounds of our mechanism. Rigorous experiments conducted on MNIST and CIFAR-10 datasets show that our mechanism is highly effective and outperforms existing solutions.

Yonetani, R., Boddeti, V. N., Kitani, K. M., Sato, Y..  2017.  Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption. 2017 IEEE International Conference on Computer Vision (ICCV). :2059–2069.

We propose a privacy-preserving framework for learning visual classifiers by leveraging distributed private image data. This framework is designed to aggregate multiple classifiers updated locally using private data and to ensure that no private information about the data is exposed during and after its learning procedure. We utilize a homomorphic cryptosystem that can aggregate the local classifiers while they are encrypted and thus kept secret. To overcome the high computational cost of homomorphic encryption of high-dimensional classifiers, we (1) impose sparsity constraints on local classifier updates and (2) propose a novel efficient encryption scheme named doublypermuted homomorphic encryption (DPHE) which is tailored to sparse high-dimensional data. DPHE (i) decomposes sparse data into its constituent non-zero values and their corresponding support indices, (ii) applies homomorphic encryption only to the non-zero values, and (iii) employs double permutations on the support indices to make them secret. Our experimental evaluation on several public datasets shows that the proposed approach achieves comparable performance against state-of-the-art visual recognition methods while preserving privacy and significantly outperforms other privacy-preserving methods.

2018-02-14
Awad, A., Matthews, A., Qiao, Y., Lee, B..  2017.  Chaotic Searchable Encryption for Mobile Cloud Storage. IEEE Transactions on Cloud Computing. PP:1–1.

This paper considers the security problem of outsourcing storage from user devices to the cloud. A secure searchable encryption scheme is presented to enable searching of encrypted user data in the cloud. The scheme simultaneously supports fuzzy keyword searching and matched results ranking, which are two important factors in facilitating practical searchable encryption. A chaotic fuzzy transformation method is proposed to support secure fuzzy keyword indexing, storage and query. A secure posting list is also created to rank the matched results while maintaining the privacy and confidentiality of the user data, and saving the resources of the user mobile devices. Comprehensive tests have been performed and the experimental results show that the proposed scheme is efficient and suitable for a secure searchable cloud storage system.

Yang, Y., Liu, X., Deng, R. H., Weng, J..  2017.  Flexible Wildcard Searchable Encryption System. IEEE Transactions on Services Computing. PP:1–1.

Searchable encryption is an important technique for public cloud storage service to provide user data confidentiality protection and at the same time allow users performing keyword search over their encrypted data. Previous schemes only deal with exact or fuzzy keyword search to correct some spelling errors. In this paper, we propose a new wildcard searchable encryption system to support wildcard keyword queries which has several highly desirable features. First, our system allows multiple keywords search in which any queried keyword may contain zero, one or two wildcards, and a wildcard may appear in any position of a keyword and represent any number of symbols. Second, it supports simultaneous search on multiple data owner’s data using only one trapdoor. Third, it provides flexible user authorization and revocation to effectively manage search and decryption privileges. Fourth, it is constructed based on homomorphic encryption rather than Bloom filter and hence completely eliminates the false probability caused by Bloom filter. Finally, it achieves a high level of privacy protection since matching results are unknown to the cloud server in the test phase. The proposed system is thoroughly analyzed and is proved secure. Extensive experimental results indicate that our system is efficient compared with other existing wildcard searchable encryption schemes in the public key setting.

Zuo, C., Shao, J., Liu, Z., Ling, Y., Wei, G..  2017.  Hidden-Token Searchable Public-Key Encryption. 2017 IEEE Trustcom/BigDataSE/ICESS. :248–254.

In this paper, we propose a variant of searchable public-key encryption named hidden-token searchable public-key encryption with two new security properties: token anonymity and one-token-per-trapdoor. With the former security notion, the client can obtain the search token from the data owner without revealing any information about the underlying keyword. Meanwhile, the client cannot derive more than one token from one trapdoor generated by the data owner according to the latter security notion. Furthermore, we present a concrete hiddentoken searchable public-key encryption scheme together with the security proofs in the random oracle model.

Guo, C., Chen, X., Jie, Y., Zhangjie, F., Li, M., Feng, B..  2017.  Dynamic Multi-phrase Ranked Search over Encrypted Data with Symmetric Searchable Encryption. IEEE Transactions on Services Computing. PP:1–1.

As cloud computing becomes prevalent, more and more data owners are likely to outsource their data to a cloud server. However, to ensure privacy, the data should be encrypted before outsourcing. Symmetric searchable encryption allows users to retrieve keyword over encrypted data without decrypting the data. Many existing schemes that are based on symmetric searchable encryption only support single keyword search, conjunctive keywords search, multiple keywords search, or single phrase search. However, some schemes, i.e., static schemes, only search one phrase in a query request. In this paper, we propose a multi-phrase ranked search over encrypted cloud data, which also supports dynamic update operations, such as adding or deleting files. We used an inverted index to record the locations of keywords and to judge whether the phrase appears. This index can search for keywords efficiently. In order to rank the results and protect the privacy of relevance score, the relevance score evaluation model is used in searching process on client-side. Also, the special construction of the index makes the scheme dynamic. The data owner can update the cloud data at very little cost. Security analyses and extensive experiments were conducted to demonstrate the safety and efficiency of the proposed scheme.

Demertzis, Ioannis, Papamanthou, Charalampos.  2017.  Fast Searchable Encryption With Tunable Locality. Proceedings of the 2017 ACM International Conference on Management of Data. :1053–1067.
Searchable encryption (SE) allows a client to outsource a dataset to an untrusted server while enabling the server to answer keyword queries in a private manner. SE can be used as a building block to support more expressive private queries such as range/point and boolean queries, while providing formal security guarantees. To scale SE to big data using external memory, new schemes with small locality have been proposed, where locality is defined as the number of non-continuous reads that the server makes for each query. Previous space-efficient SE schemes achieve optimal locality by increasing the read efficiency-the number of additional memory locations (false positives) that the server reads per result item. This can hurt practical performance. In this work, we design, formally prove secure, and evaluate the first SE scheme with tunable locality and linear space. Our first scheme has optimal locality and outperforms existing approaches (that have a slightly different leakage profile) by up to 2.5 orders of magnitude in terms of read efficiency, for all practical database sizes. Another version of our construction with the same leakage as previous works can be tuned to have bounded locality, optimal read efficiency and up to 60x more efficient end-to-end search time. We demonstrate that our schemes work fast in in-memory as well, leading to search time savings of up to 1 order of magnitude when compared to the most practical in-memory SE schemes. Finally, our construction can be tuned to achieve trade-offs between space, read efficiency, locality, parallelism and communication overhead.
Bost, Raphael, Minaud, Brice, Ohrimenko, Olga.  2017.  Forward and Backward Private Searchable Encryption from Constrained Cryptographic Primitives. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1465–1482.
Using dynamic Searchable Symmetric Encryption, a user with limited storage resources can securely outsource a database to an untrusted server, in such a way that the database can still be searched and updated efficiently. For these schemes, it would be desirable that updates do not reveal any information a priori about the modifications they carry out, and that deleted results remain inaccessible to the server a posteriori. If the first property, called forward privacy, has been the main motivation of recent works, the second one, backward privacy, has been overlooked. In this paper, we study for the first time the notion of backward privacy for searchable encryption. After giving formal definitions for different flavors of backward privacy, we present several schemes achieving both forward and backward privacy, with various efficiency trade-offs. Our constructions crucially rely on primitives such as constrained pseudo-random functions and puncturable encryption schemes. Using these advanced cryptographic primitives allows for a fine-grained control of the power of the adversary, preventing her from evaluating functions on selected inputs, or decrypting specific ciphertexts. In turn, this high degree of control allows our SSE constructions to achieve the stronger forms of privacy outlined above. As an example, we present a framework to construct forward-private schemes from range-constrained pseudo-random functions. Finally, we provide experimental results for implementations of our schemes, and study their practical efficiency.
Chum, Chi Sing, Zhang, Xiaowen.  2017.  A New Bloom Filter Structure for Searchable Encryption Schemes. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. :143–145.
We propose a new Bloom filter structure for searchable encryption schemes in which a large Bloom filter is treated as (replaced with) two smaller ones for the search index. False positive is one inherent drawback of Bloom filter. We formulate the false positive rates for one regular large Bloom filter, and then derive the false positive rate for the two smaller ones. With examples, we show how the new scheme cuts down the false positive rate and the size of Bloom filter to a balanced point that fulfills the user requirements and increases the efficiency of the structure.
Poh, Geong Sen, Chin, Ji-Jian, Yau, Wei-Chuen, Choo, Kim-Kwang Raymond, Mohamad, Moesfa Soeheila.  2017.  Searchable Symmetric Encryption: Designs and Challenges. ACM Comput. Surv.. 50:40:1–40:37.
Searchable Symmetric Encryption (SSE) when deployed in the cloud allows one to query encrypted data without the risk of data leakage. Despite the widespread interest, existing surveys do not examine in detail how SSE’s underlying structures are designed and how these result in the many properties of a SSE scheme. This is the gap we seek to address, as well as presenting recent state-of-the-art advances on SSE. Specifically, we present a general framework and believe the discussions may lead to insights for potential new designs. We draw a few observations. First, most schemes use index table, where optimal index size and sublinear search can be achieved using an inverted index. Straightforward updating can only be achieved using direct index, but search time would be linear. A recent trend is the combinations of index table, and tree, deployed for efficient updating and storage. Secondly, mechanisms from related fields such as Oblivious RAM (ORAM) have been integrated to reduce leakages. However, using these mechanisms to minimise leakages in schemes with richer functionalities (e.g., ranked, range) is relatively unexplored. Thirdly, a new approach (e.g., multiple servers) is required to mitigate new and emerging attacks on leakage. Lastly, we observe that a proposed index may not be practically efficient when implemented, where I/O access must be taken into consideration.
Kim, Kee Sung, Kim, Minkyu, Lee, Dongsoo, Park, Je Hong, Kim, Woo-Hwan.  2017.  Forward Secure Dynamic Searchable Symmetric Encryption with Efficient Updates. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1449–1463.

The recently proposed file-injection type attacks are highlighting the importance of forward security in dynamic searchable symmetric encryption (DSSE). Forward security enables to thwart those attacks by hiding the information about the newly added files matching a previous search query. However, there are still only a few DSSE schemes that provide forward security, and they have factors that hinder efficiency. In particular, all of these schemes do not support actual data deletion, which increments both storage space and computational complexity. In this paper, we design and implement a forward secure DSSE scheme with optimal search and update complexity, for both computation and communication point of view. As a starting point, we propose a new, simple, theoretical data structure, called dual dictionary that can take advantage of both the inverted and the forward indexes at the same time. This data structure allows to delete data explicitly and in real time, which greatly improves efficiency compared to previous works. In addition, our scheme provides forward security by encrypting the newly added data with fresh keys not related with the previous search tokens. We implemented our scheme for Enron email and Wikipedia datasets and measured its performance. The comparison with Sophos shows that our scheme is very efficient in practice, for both searches and updates in dynamic environments.

Zhang, Yuankai, O'Neill, Adam, Sherr, Micah, Zhou, Wenchao.  2017.  Privacy-preserving Network Provenance. Proc. VLDB Endow.. 10:1550–1561.
Network accountability, forensic analysis, and failure diagnosis are becoming increasingly important for network management and security. Network provenance significantly aids network administrators in these tasks by explaining system behavior and revealing the dependencies between system states. Although resourceful, network provenance can sometimes be too rich, revealing potentially sensitive information that was involved in system execution. In this paper, we propose a cryptographic approach to preserve the confidentiality of provenance (sub)graphs while allowing users to query and access the parts of the graph for which they are authorized. Our proposed solution is a novel application of searchable symmetric encryption (SSE) and more generally structured encryption (SE). Our SE-enabled provenance system allows a node to enforce access control policies over its provenance data even after the data has been shipped to remote nodes (e.g., for optimization purposes). We present a prototype of our design and demonstrate its practicality, scalability, and efficiency for both provenance maintenance and querying.
Liu, Z., Liao, Y., Yang, X., He, Y., Zhao, K..  2017.  Identity-Based Remote Data Integrity Checking of Cloud Storage From Lattices. 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM). :128–135.
In cloud storage, remote data integrity checking is considered as a crucial technique about data owners who upload enormous data to cloud server provider. A majority of the existing remote data integrity checking protocols rely on the expensive public key infrastructure. In addition, the verification of certificates needs heavy computation and communication cost. Meanwhile, the existing some protocols are not secure under the quantum computer attacks. However, lattice-based constructed cryptography can resist quantum computer attacks and is fairly effective, involving matrix-matrix or matrix-vector multiplications. So, we propose an identity-based remote data integrity checking protocol from lattices, which can eliminate the certificate management process and resist quantum computer attacks. Our protocol is completeness and provably secure based on the hardness small integer solution assumption. The presented scheme is secure against cloud service provider attacks, and leaks no any blocks of the stored file to the third party auditor during verification stage, namely the data privacy against the curiosity third party auditor attacks. The cloud service provider attack includes lost attack and tamper attack. Furthermore, the performance analysis of some protocols demonstrate that our protocol of remote data integrity checking is useful and efficient.
Mulhem, S., Adi, W., Mars, A., Prevelakis, V..  2017.  Chaining trusted links by deploying secured physical identities. 2017 Seventh International Conference on Emerging Security Technologies (EST). :215–220.
Efficient trust management between nodes in a huge network is an essential requirement in modern networks. This work shows few generic primitive protocols for creating a trusted link between nodes by deploying unclonable physical tokens as Secret Unknown Ciphers. The proposed algorithms are making use of the clone-resistant physical identity of each participating node. Several generic node authentication protocols are presented. An intermediate node is shown to be usable as a mediator to build trust without having influence on the resulting security chain. The physical clone-resistant identities are using our early concept of Secret Unknown Cipher (SUC) technique. The main target of this work is to show the particular and efficient trust-chaining in large networks when SUC techniques are involved.
Buchmann, N., Rathgeb, C., Baier, H., Busch, C., Margraf, M..  2017.  Enhancing Breeder Document Long-Term Security Using Blockchain Technology. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2:744–748.

In contrast to electronic travel documents (e.g. ePassports), the standardisation of breeder documents (e.g. birth certificates), regarding harmonisation of content and contained security features is in statu nascendi. Due to the fact that breeder documents can be used as an evidence of identity and enable the application for electronic travel documents, they pose the weakest link in the identity life cycle and represent a security gap for identity management. In this work, we present a cost efficient way to enhance the long-term security of breeder documents by utilizing blockchain technology. A conceptual architecture to enhance breeder document long-term security and an introduction of the concept's constituting system components is presented. Our investigations provide evidence that the Bitcoin blockchain is most suitable for breeder document long-term security.