Biblio
Context-based adaptive binary arithmetic coding (CABAC) is the only entropy coding method in HEVC. According to statistics, CABAC encoders account for more than 25% of the high efficiency video coding (HEVC) coding time. Therefore, the improved CABAC algorithm can effectively improve the coding speed of HEVC. On this basis, a selective encryption scheme based on the improved CABAC algorithm is proposed. Firstly, the improved CABAC algorithm is used to optimize the regular mode encoding, and then the cryptographic algorithm is used to selectively encrypt the syntax elements in bypass mode encoding. The experimental results show that the encoding time is reduced by nearly 10% when there is great interference to the video information. The scheme is both safe and effective.
Binary code search has received much attention recently due to its impactful applications, e.g., plagiarism detection, malware detection and software vulnerability auditing. However, developing an effective binary code search tool is challenging due to the gigantic syntax and structural differences in binaries resulted from different compilers, compiler options and malware family. In this paper, we propose a scalable and accurate binary search engine which performs syntactic matching by combining a set of key techniques to address the challenges above. The key contribution is binary code searching technique which combined function filtering and partial trace method to match the function code relatively quick and accurate. In addition, a simhash and basic information based function filtering is proposed to dramatically reduce the irrelevant target functions. Besides, we introduce a partial trace method for matching the shortlisted function accurately. The experimental results show that our method can find similar functions, even with the presence of program structure distortion, in a scalable manner.
Zero-day Web attacks are arguably the most serious threats to Web security, but are very challenging to detect because they are not seen or known previously and thus cannot be detected by widely-deployed signature-based Web Application Firewalls (WAFs). This paper proposes ZeroWall, an unsupervised approach, which works with an existing WAF in pipeline, to effectively detecting zero-day Web attacks. Using historical Web requests allowed by an existing signature-based WAF, a vast majority of which are assumed to be benign, ZeroWall trains a self-translation machine using an encoder-decoder recurrent neural network to capture the syntax and semantic patterns of benign requests. In real-time detection, a zero-day attack request (which the WAF fails to detect), not understood well by self-translation machine, cannot be translated back to its original request by the machine, thus is declared as an attack. In our evaluation using 8 real-world traces of 1.4 billion Web requests, ZeroWall successfully detects real zero-day attacks missed by existing WAFs and achieves high F1-scores over 0.98, which significantly outperforms all baseline approaches.
This paper describes a machine assistance approach to grading decisions for values that might be missing or need validation, using a mathematical algebraic form of an Expert System, instead of the traditional textual or logic forms and builds a neural network computational graph structure. This Experts System approach is also structured into a neural network like format of: input, hidden and output layers that provide a structured approach to the knowledge-base organization, this provides a useful abstraction for reuse for data migration applications in big data, Cyber and relational databases. The approach is further enhanced with a Bayesian probability tree approach to grade the confidences of value probabilities, instead of the traditional grading of the rule probabilities, and estimates the most probable value in light of all evidence presented. This is ground work for a Machine Learning (ML) experts system approach in a form that is closer to a Neural Network node structure.
Writing style is a combination of consistent decisions associated with a specific author at different levels of language production, including lexical, syntactic, and structural. In this paper, we introduce a style-aware neural model to encode document information from three stylistic levels and evaluate it in the domain of authorship attribution. First, we propose a simple way to jointly encode syntactic and lexical representations of sentences. Subsequently, we employ an attention-based hierarchical neural network to encode the syntactic and semantic structure of sentences in documents while rewarding the sentences which contribute more to capturing the writing style. Our experimental results, based on four benchmark datasets, reveal the benefits of encoding document information from all three stylistic levels when compared to the baseline methods in the literature.
Ransomware attacks are a prevalent cybersecurity threat to every user and enterprise today. This is attributed to their polymorphic behaviour and dispersion of inexhaustible versions due to the same ransomware family or threat actor. A certain ransomware family or threat actor repeatedly utilises nearly the same style or codebase to create a vast number of ransomware versions. Therefore, it is essential for users and enterprises to keep well-informed about this threat landscape and adopt proactive prevention strategies to minimise its spread and affects. This requires a technique to detect ransomware samples to determine the similarity and link with the known ransomware family or threat actor. Therefore, this paper presents a detection method for ransomware by employing a combination of a similarity preserving hashing method called fuzzy hashing and a clustering method. This detection method is applied on the collected WannaCry/WannaCryptor ransomware samples utilising a range of fuzzy hashing and clustering methods. The clustering results of various clustering methods are evaluated through the use of the internal evaluation indexes to determine the accuracy and consistency of their clustering results, thus the effective combination of fuzzy hashing and clustering method as applied to the particular ransomware corpus. The proposed detection method is a static analysis method, which requires fewer computational overheads and performs rapid comparative analysis with respect to other static analysis methods.
Ransomware is currently one of the most significant cyberthreats to both national infrastructure and the individual, often requiring severe treatment as an antidote. Triaging ran-somware based on its similarity with well-known ransomware samples is an imperative preliminary step in preventing a ransomware pandemic. Selecting the most appropriate triaging method can improve the precision of further static and dynamic analysis in addition to saving significant t ime a nd e ffort. Currently, the most popular and proven triaging methods are fuzzy hashing, import hashing and YARA rules, which can ascertain whether, or to what degree, two ransomware samples are similar to each other. However, the mechanisms of these three methods are quite different and their comparative assessment is difficult. Therefore, this paper presents an evaluation of these three methods for triaging the four most pertinent ransomware categories WannaCry, Locky, Cerber and CryptoWall. It evaluates their triaging performance and run-time system performance, highlighting the limitations of each method.
In this paper we propose a solution to support iOS developers in creating better applications, to use static analysis to investigate source code and detect secure coding issues while simultaneously pointing out good practices and/or secure APIs they should use.
Reverse engineering is a manually intensive but necessary technique for understanding the inner workings of new malware, finding vulnerabilities in existing systems, and detecting patent infringements in released software. An assembly clone search engine facilitates the work of reverse engineers by identifying those duplicated or known parts. However, it is challenging to design a robust clone search engine, since there exist various compiler optimization options and code obfuscation techniques that make logically similar assembly functions appear to be very different. A practical clone search engine relies on a robust vector representation of assembly code. However, the existing clone search approaches, which rely on a manual feature engineering process to form a feature vector for an assembly function, fail to consider the relationships between features and identify those unique patterns that can statistically distinguish assembly functions. To address this problem, we propose to jointly learn the lexical semantic relationships and the vector representation of assembly functions based on assembly code. We have developed an assembly code representation learning model \textbackslashemphAsm2Vec. It only needs assembly code as input and does not require any prior knowledge such as the correct mapping between assembly functions. It can find and incorporate rich semantic relationships among tokens appearing in assembly code. We conduct extensive experiments and benchmark the learning model with state-of-the-art static and dynamic clone search approaches. We show that the learned representation is more robust and significantly outperforms existing methods against changes introduced by obfuscation and optimizations.
In this paper, we present a combinatorial testing methodology for testing web applications in regards to SQL injection vulnerabilities. We describe three attack grammars that were developed and used to generate concrete attack vectors. Furthermore, we present and evaluate two different oracles used to observe the application's behavior when subjected to such attack vectors. We also present a prototype tool called SQLInjector capable of automated SQL injection vulnerability testing for web applications. The developed methodology can be applied to any web application that uses server side scripting and HTML for handling user input and has a SQL database backend. Our approach relies on the use of a database proxy, making this a gray-box testing method. We establish the effectiveness of the proposed tool with the WAVSEP verification framework and conduct a case study on real-world web applications, where we are able to discover both known vulnerabilities and additional previously undiscovered flaws.