Biblio
Interleave division multiple access (IDMA) is a multiple-access scheme and it is expected to improve frequency efficiency. Meanwhile, the damage caused by cyberattacks is increasing yearly. To solve this problem, we propose a method of applying radio-wave encryption to IDMA based on chaos modulation to realize physical layer security and the channel coding effect. We show that the proposed scheme ensures physical layer security and obtains channel coding gain by numerical simulations.
Aiming at the problems of poor stability and low accuracy of current communication data informatization processing methods, this paper proposes a research on nonlinear frequency hopping communication data informatization under the framework of big data security evaluation. By adding a frequency hopping mediation module to the frequency hopping communication safety evaluation framework, the communication interference information is discretely processed, and the data parameters of the nonlinear frequency hopping communication data are corrected and converted by combining a fast clustering analysis algorithm, so that the informatization processing of the nonlinear frequency hopping communication data under the big data safety evaluation framework is completed. Finally, experiments prove that the research on data informatization of nonlinear frequency hopping communication under the framework of big data security evaluation could effectively improve the accuracy and stability.
Internet of Things (IoT) and cloud computing are promising technologies that change the way people communicate and live. As the data collected through IoT devices often involve users' private information and the cloud is not completely trusted, users' private data are usually encrypted before being uploaded to cloud for security purposes. Searchable encryption, allowing users to search over the encrypted data, extends data flexibility on the premise of security. In this paper, to achieve the accurate and efficient ciphertext searching, we present an efficient multi-keyword ranked searchable encryption scheme supporting ciphertext-policy attribute-based encryption (CP-ABE) test (MRSET). For efficiency, numeric hierarchy supporting ranked search is introduced to reduce the dimensions of vectors and matrices. For practicality, CP-ABE is improved to support access right test, so that only documents that the user can decrypt are returned. The security analysis shows that our proposed scheme is secure, and the experimental result demonstrates that our scheme is efficient.
Formal security verification of firmware interacting with hardware in modern Systems-on-Chip (SoCs) is a critical research problem. This faces the following challenges: (1) design complexity and heterogeneity, (2) semantics gaps between software and hardware, (3) concurrency between firmware/hardware and between Intellectual Property Blocks (IPs), and (4) expensive bit-precise reasoning. In this paper, we present a co-verification methodology to address these challenges. We model hardware using the Instruction-Level Abstraction (ILA), capturing firmware-visible behavior at the architecture level. This enables integrating hardware behavior with firmware in each IP into a single thread. The co-verification with multiple firmware across IPs is formulated as a multi-threaded program verification problem, for which we leverage software verification techniques. We also propose an optimization using abstraction to prevent expensive bit-precise reasoning. The evaluation of our methodology on an industry SoC Secure Boot design demonstrates its applicability in SoC security verification.
Cloud computing is the major paradigm in today's IT world with the capabilities of security management, high performance, flexibility, scalability. Customers valuing these features can better benefit if they use a cloud environment built using HPC fabric architecture. However, security is still a major concern, not only on the software side but also on the hardware side. There are multiple studies showing that the malicious users can affect the regular customers through the hardware if they are co-located on the same physical system. Therefore, solving possible security concerns on the HPC fabric architecture will clearly make the fabric industries leader in this area. In this paper, we propose an autonomic HPC fabric architecture that leverages both resilient computing capabilities and adaptive anomaly analysis for further security.
To date, numerous ways have been created to learn a fusion solution from data. However, a gap exists in terms of understanding the quality of what was learned and how trustworthy the fusion is for future-i.e., new-data. In part, the current paper is driven by the demand for so-called explainable AI (XAI). Herein, we discuss methods for XAI of the Choquet integral (ChI), a parametric nonlinear aggregation function. Specifically, we review existing indices, and we introduce new data-centric XAI tools. These various XAI-ChI methods are explored in the context of fusing a set of heterogeneous deep convolutional neural networks for remote sensing.
The study of spin waves (SW) excitation in magnetic devices is one of the most important topics in modern magnetism due to the applications of the information carrier and the signal processing. We experimentally realize a spin-wave generator, capable of frequency modulation, in a magnonic waveguide. The emission of spin waves was produced by the reversal or oscillation of nanoscale magnetic vortex cores in a NiFe disk array. The vortex cores in the disk array were excited by an out of plane radio frequency (rf) magnetic field. The dynamic behaviors of the magnetization of NiFe were studied using a micro-focused Brillouin light scattering spectroscopy (BLS) setup.
As the use of wireless technologies increases significantly due to ease of deployment, cost-effectiveness and the increase in bandwidth, there is a critical need to make the wireless communications secure, and resilient to attacks or faults (malicious or natural). Wireless communications are inherently prone to cyberattacks due to the open access to the medium. While current wireless protocols have addressed the privacy issues, they have failed to provide effective solutions against denial of service attacks, session hijacking and jamming attacks. In this paper, we present a resilient wireless communication architecture based on Moving Target Defense, and Software Defined Radios (SDRs). The approach achieves its resilient operations by randomly changing the runtime characteristics of the wireless communications channels between different wireless nodes to make it extremely difficult to succeed in launching attacks. The runtime characteristics that can be changed include packet size, network address, modulation type, and the operating frequency of the channel. In addition, the lifespan for each configuration will be random. To reduce the overhead in switching between two consecutive configurations, we use two radio channels that are selected at random from a finite set of potential channels, one will be designated as an active channel while the second acts as a standby channel. This will harden the wireless communications attacks because the attackers have no clue on what channels are currently being used to exploit existing vulnerability and launch an attack. The experimental results and evaluation show that our approach can tolerate a wide range of attacks (Jamming, DOS and session attacks) against wireless networks.
As a very valuable cultural heritage, palm leaf manuscripts offer a new challenge in document analysis system due to the specific characteristics on physical support of the manuscript. With the aim of finding an optimal binarization method for palm leaf manuscript images, creating a new ground truth binarized image is a necessary step in document analysis of palm leaf manuscript. But, regarding to the human intervention in ground truthing process, an important remark about the subjectivity effect on the construction of ground truth binarized image has been analysed and reported. In this paper, we present an experiment in a real condition to analyse the existance of human subjectivity on the construction of ground truth binarized image of palm leaf manuscript images and to measure quantitatively the ground truth variability with several binarization evaluation metrics.
In this paper a joint algorithm was designed to detect a variety of unauthorized access risks in multilevel hybrid cloud. First of all, the access history is recorded among different virtual machines in multilevel hybrid cloud using the global flow diagram. Then, the global flow graph is taken as auxiliary decision-making basis to design legitimacy detection algorithm based data access and is represented by formal representation, Finally the implement process was specified, and the algorithm can effectively detect operating against regulations such as simple unauthorized level across, beyond indirect unauthorized and other irregularities.
Compressive Sampling and Sparse reconstruction theory is applied to a linearly frequency modulated continuous wave hybrid lidar/radar system. The goal is to show that high resolution time of flight measurements to underwater targets can be obtained utilizing far fewer samples than dictated by Nyquist sampling theorems. Traditional mixing/down-conversion and matched filter signal processing methods are reviewed and compared to the Compressive Sampling and Sparse Reconstruction methods. Simulated evidence is provided to show the possible sampling rate reductions, and experiments are used to observe the effects that turbid underwater environments have on recovery. Results show that by using compressive sensing theory and sparse reconstruction, it is possible to achieve significant sample rate reduction while maintaining centimeter range resolution.
This paper presents a model calibration algorithm for the modulated wideband converter (MWC) with non-ideal analog lowpass filter (LPF). The presented technique uses a test signal to estimate the finite impulse response (FIR) of the practical non-ideal LPF, and then a digital compensation filter is designed to calibrate the approximated FIR filter in the digital domain. At the cost of a moderate oversampling rate, the calibrated filter performs as an ideal LPF. The calibrated model uses the MWC system with non-ideal LPF to capture the samples of underlying signal, and then the samples are filtered by the digital compensation filter. Experimental results indicate that, without making any changes to the architecture of MWC, the proposed algorithm can obtain the samples as that of standard MWC with ideal LPF, and the signal can be reconstructed with overwhelming probability.
During an advanced persistent threat (APT), an attacker group usually establish more than one C&C server and these C&C servers will change their domain names and corresponding IP addresses over time to be unseen by anti-virus software or intrusion prevention systems. For this reason, discovering and catching C&C sites becomes a big challenge in information security. Based on our observations and deductions, a malware tends to contain a fixed user agent string, and the connection behaviors generated by a malware is different from that by a benign service or a normal user. This paper proposed a new method comprising filtering and clustering methods to detect C&C servers with a relatively higher coverage rate. The experiments revealed that the proposed method can successfully detect C&C Servers, and the can provide an important clue for detecting APT.
Voting among replicated data collection devices is a means to achieve dependable data delivery to the end-user in a hostile environment. Failures may occur during the data collection process: such as data corruptions by malicious devices and security/bandwidth attacks on data paths. For a voting system, how often a correct data is delivered to the user in a timely manner and with low overhead depicts the QoS. Prior works have focused on algorithm correctness issues and performance engineering of the voting protocol mechanisms. In this paper, we study the methods for autonomic management of device replication in the voting system to deal with situations where the available network bandwidth fluctuates, the fault parameters change unpredictably, and the devices have battery energy constraints. We treat the voting system as a `black-box' with programmable I/O behaviors. A management module exercises a macroscopic control of the voting box with situational inputs: such as application priorities, network resources, battery energy, and external threat levels.