Biblio
Web Scraping is the technique of extracting desired data in an automated way by scanning the internal links and content of a website, this activity usually performed by systematically programmed bots. This paper explains our proposed solution to protect the blog content from theft and from being copied to other destinations by mitigating the scraping bots. To achieve our purpose we applied two steps in two levels, the first one, on the main blog page level, mitigated the work of crawler bots by adding extra empty articles anchors among real articles, and the next step, on the article page level, we add a random number of empty and hidden spans with randomly generated text among the article's body. To assess this solution we apply it to a local project developed using PHP language in Laravel framework, and put four criteria that measure the effectiveness. The results show that the changes in the file size before and after the application do not affect it, also, the processing time increased by few milliseconds which still in the acceptable range. And by using the HTML-similarity tool we get very good results that show the symmetric over style, with a few bit changes over the structure. Finally, to assess the effects on the bots, scraper bot reused and get the expected results from the programmed middleware. These results show that the solution is feasible to be adopted and use to protect blogs content.
This paper presents hybrid system to minimize damage by zero-day attack. Proposed system consists of signature-based NIDPS, honeypot and temporary queue. When proposed system receives packet from external network, packet which is known for attack packet is dropped by signature-based NIDPS. Passed packets are redirected to honeypot, because proposed system assumes that all packets which pass NIDPS have possibility of zero-day attack. Redirected packet is stored in temporary queue and if the packet has possibility of zero-day attack, honeypot extracts signature of the packet. Proposed system creates rule that match rule format of NIDPS based on extracted signatures and updates the rule. After the rule update is completed, temporary queue sends stored packet to NIDPS then packet with risk of attack can be dropped. Proposed system can reduce time to create and apply rule which can respond to unknown attack packets. Also, it can drop packets that have risk of zero-day attack in real time.
The emergence of Cyber-Physical Systems (CPSs) is a potential paradigm shift for the usage of Information and Communication Technologies (ICT). From predominantly a facilitator of information and communication services, the role of ICT in the present age has expanded to the management of objects and resources in the physical world. Thus, it is imperative to devise mechanisms to ensure the trustworthiness of data to secure vulnerable devices against security threats. This work presents an analytical framework based on non-cooperative game theory to evaluate the trustworthiness of individual sensor nodes that constitute the CPS. The proposed game-theoretic model captures the factors impacting the trustworthiness of CPS sensor nodes. Further, the model is used to estimate the Nash equilibrium solution of the game, to derive a trust threshold criterion. The trust threshold represents the minimum trust score required to be maintained by individual sensor nodes during CPS operation. Sensor nodes with trust scores below the threshold are potentially malicious and may be removed or isolated to ensure the secure operation of CPS.
With the rapid progression of Information and Communication Technology (ICT) and especially of Internet of Things (IoT), the conventional electrical grid is transformed into a new intelligent paradigm, known as Smart Grid (SG). SG provides significant benefits both for utility companies and energy consumers such as the two-way communication (both electricity and information), distributed generation, remote monitoring, self-healing and pervasive control. However, at the same time, this dependence introduces new security challenges, since SG inherits the vulnerabilities of multiple heterogeneous, co-existing legacy and smart technologies, such as IoT and Industrial Control Systems (ICS). An effective countermeasure against the various cyberthreats in SG is the Intrusion Detection System (IDS), informing the operator timely about the possible cyberattacks and anomalies. In this paper, we provide an anomaly-based IDS especially designed for SG utilising operational data from a real power plant. In particular, many machine learning and deep learning models were deployed, introducing novel parameters and feature representations in a comparative study. The evaluation analysis demonstrated the efficacy of the proposed IDS and the improvement due to the suggested complex data representation.
{Information and Communications Technology (ICT) have rationalized government services into a more efficient and transparent government. However, a large part of the government services remained constant in the manual process due to the high cost of ICT. The purpose of this paper is to explore the role of e-governance and ICT in the legislative management of municipalities in the Philippines. This study adopted the phases of Princeton Project Management Methodology (PPMM) as the approach in the development of LeMTrac. This paper utilized the developmental- quantitative research design involving two (2) sets of respondents, which are the end-users and IT experts. Majority of the respondents perceived that the system as "highly acceptable" with an average Likert score of 4.72 for the ISO 9126 Software quality metric Usability. The findings also reveal that the integration of LeMTrac within the Sangguniang Bayan (SB) Office in the Municipal Local Government Units (LGU) of Nabua and Bula, Camarines Sur provided better accessibility, security, and management of documents.
In this study, we conducted a survey of those who have used E-Government Services (civil servants, employees of public institutions, and the public) to empirically identify the factors affecting the continuous use intention E-Government Services, and conducted an empirical analysis using SPSS and Smart PLS with 284 valid samples except for dual, error and poor answers. Based on the success model of the information system (IS access model), we set independent variables which were divided into quality factors (service quality, system quality, information quality) and risk factors (personal information and security), and perceived ease of use and reliability, which are the main variables based on the technology acceptance model (TAM) that best describes the parameter group, were established as useful parameters. In addition, we design the research model by setting user satisfaction and the continuous use intention as dependent variables, conducted the study about how affecting factors influence to the acceptance factors through 14 hypotheses.The study found that 12 from 14 hypotheses were adopted and 2 were rejected. Looking at the results derived, it was analyzed that, firstly, 3 quality factors all affect perceived ease of use in relation to the quality of service, system quality, information quality which are perceived ease of use of E-Government Services. Second, in relation to the quality of service quality, system quality, information quality and perceived usefulness which are the quality factors of E-Government Services, the quality of service and information quality affect perceived usefulness, but system quality does not affect perceived usefulness. Third, it was analyzed that both factors influence reliability in the relationship between Privacy and security and trust which are risk factors. Fourth, the relationship between perceived ease of use and perceived usefulness has shown that perceived ease of use does not affect perceived usefulness. Finally, the relationship between user value factors (perceptual usability, perceived usefulness and trust) and user satisfaction and the continuous use intention was analyzed that user value factors affect user satisfaction while user satisfaction affects the continuous use intention. This study can be meaningful in that it theoretically presented the factors influencing the continued acceptance of e-government services through precedent research, presented the variables and measurement items verified through the empirical analysis process, and verified the causal relationship between the variables. The e-government service can contribute to the implementation of e-government in line with the era of the 4th Industrial Revolution by using it as a reference to the establishment of policies to improve the quality of people's lives and provide convenient services to the people.
We aim at creating a society where we can resolve various social challenges by incorporating the innovations of the fourth industrial revolution (e.g. IoT, big data, AI, robot, and the sharing economy) into every industry and social life. By doing so the society of the future will be one in which new values and services are created continuously, making people's lives more conformable and sustainable. This is Society 5.0, a super-smart society. Security and privacy are key issues to be addressed to realize Society 5.0. Privacy-preserving data analytics will play an important role. In this talk we show our recent works on privacy-preserving data analytics such as privacy-preserving logistic regression and privacy-preserving deep learning. Finally, we show our ongoing research project under JST CREST “AI”. In this project we are developing privacy-preserving financial data analytics systems that can detect fraud with high security and accuracy. To validate the systems, we will perform demonstration tests with several financial institutions and solve the problems necessary for their implementation in the real world.
With the tighter integration of power system and Information and Communication Technology (ICT), power grid is becoming a typical cyber physical system (CPS). It is important to analyze the impact of the cyber event on power system, so that it is necessary to build a co-simulation system for studying the interaction between power system and ICT. In this paper, a cyber physical power system (CPPS) co-simulation platform is proposed, which includes the hardware-in-the-loop (HIL) simulation function. By using flexible interface, various simulation software for power system and ICT can be interconnected into the platform to build co-simulation tools for various simulation purposes. To demonstrate it as a proof, one simulation framework for real life cyber-attack on power system control is introduced. In this case, the real life denial-of-service attack on a router in automatic voltage control (AVC) is simulated to demonstrate impact of cyber-attack on power system.
The existing radial topology makes the power system less reliable since any part in the system failure will disrupt electrical power delivery in the network. The increasing security concerns, electrical energy theft, and present advancement in Information and Communication Technologies are some factors that led to modernization of power system. In a smart grid, a network of smart sensors offers numerous opportunities that may include monitoring of power, consumer-side energy management, synchronization of dispersed power storage, and integrating sources of renewable energy. Smart sensor networks are low cost and are ease to deploy hence they are favorable contestants for deployment smart power grids at a larger scale. These networks will result in a colossal volume of dissimilar range of data that require an efficient processing and analyzing process in order to realize an efficient smart grid. The existing technology can be used to collect data but dealing with the collected information proficiently as well as mining valuable material out of it remains challenging. The paper investigates communication technologies that maybe deployed in a smart grid. In this paper simulations results for the Additive White Gaussian Noise (AWGN) channel are illustrated. We propose a model and a communication network domain riding on the power system domain. The model was interrogated by simulation in MATLAB.
With the recent advances in information and communication technology, Web and Mobile Internet applications have become a part of our daily lives. These developments have also emerged Information Security concept due to the necessity of protecting information of institutions from Internet attackers. There are many security approaches to provide information security in Enterprise applications. However, using only one of these approaches may not be efficient enough to obtain security. This paper describes a Multi-Layered Framework of implementing two-factor and single sign-on authentication together. The proposed framework generates unique one-time passwords (OTP), which are used to authenticate application data. Nevertheless, using only OTP mechanism does not meet security requirements. Therefore, implementing a separate authentication application which has single sign-on capability is necessary.