Biblio
Living in the age of digital transformation, companies and individuals are moving to public and private clouds to store and retrieve information, hence the need to store and retrieve data is exponentially increasing. Existing storage technologies such as DAS are facing a big challenge to deal with these huge amount of data. Hence, newer technologies should be adopted. Storage Area Network (SAN) is a distributed storage technology that aggregates data from several private nodes into a centralized secure place. Looking at SAN from a security perspective, clearly physical security over multiple geographical remote locations is not adequate to ensure a full security solution. A SAN security framework needs to be developed and designed. This work investigates how SAN protocols work (FC, ISCSI, FCOE). It also investigates about other storages technologies such as Network Attached Storage (NAS) and Direct Attached Storage (DAS) including different metrics such as: IOPS (input output per second), Throughput, Bandwidths, latency, cashing technologies. This research work is focusing on the security vulnerabilities in SAN listing different attacks in SAN protocols and compare it to other such as NAS and DAS. Another aspect of this work is to highlight performance factors in SAN in order to find a way to improve the performance focusing security solutions aimed to enhance the security level in SAN.
This paper introduces a secured and distributed Big Data storage scheme with multiple authorizations. It divides the Big Data into small chunks and distributes them through multiple Cloud locations. The Shamir's Secret Sharing and Secure Hash Algorithm are employed to provide the security and authenticity of this work. The proposed methodology consists of two phases: the distribution and retrieving phases. The distribution phase comprises three operations of dividing, encrypting, and distribution. The retrieving phase performs collecting and verifying operations. To increase the security level, the encryption key is divided into secret shares using Shamir's Algorithm. Moreover, the Secure Hash Algorithm is used to verify the Big Data after retrieving from the Cloud. The experimental results show that the proposed design can reconstruct a distributed Big Data with good speed while conserving the security and authenticity properties.
In this paper we consider the threat surface and security of air gapped wallet schemes for permissioned blockchains as preparation for a Markov based mathematical model, and quantify the risk associated with private key leakage. We identify existing threats to the wallet scheme and existing work done to both attack and secure the scheme. We provide an overview the proposed model and outline justification for our methods. We follow with next steps in our remaining work and the overarching goals and motivation for our methods.
In this paper we consider the threat surface and security of air gapped wallet schemes for permissioned blockchains as preparation for a Markov based mathematical model, and quantify the risk associated with private key leakage. We identify existing threats to the wallet scheme and existing work done to both attack and secure the scheme. We provide an overview the proposed model and outline justification for our methods. We follow with next steps in our remaining work and the overarching goals and motivation for our methods.
Blockchains are emerging technologies that propose new business models and value propositions. Besides their application for cryptocurrency purposes, as distributed ledgers of transactions, they enable new ways to provision trusted information in a distributed fashion. In this paper, we present our product tagging solution designed to help Small & Medium Enterprises (SMEs) protect their brands against counterfeit products and parallel markets, as well as to enhance UX (User Experience) and promote the brand and product.Our solution combines the use of DLT to assure, in a verifiable and permanent way, the trustworthiness and confidentiality of the information associated to the goods and the innovative CP-ABE encryption technique to differentiate accessibility to the product's information.
In the last few years, cryptocurrency mining has become more and more important on the Internet activity and nowadays is even having a noticeable impact on the global economy. This has motivated the emergence of a new malicious activity called cryptojacking, which consists of compromising other machines connected to the Internet and leverage their resources to mine cryptocurrencies. In this context, it is of particular interest for network administrators to detect possible cryptocurrency miners using network resources without permission. Currently, it is possible to detect them using IP address lists from known mining pools, processing information from DNS traffic, or directly performing Deep Packet Inspection (DPI) over all the traffic. However, all these methods are still ineffective to detect miners using unknown mining servers or result too expensive to be deployed in real-world networks with large traffic volume. In this paper, we present a machine learning-based method able to detect cryptocurrency miners using NetFlow/IPFIX network measurements. Our method does not require to inspect the packets' payload; as a result, it achieves cost-efficient miner detection with similar accuracy than DPI-based techniques.
With the development of network services and people's privacy requirements continue to increase. On the basis of providing anonymous user communication, it is necessary to protect the anonymity of the server. At the same time, there are many threatening crime messages in the dark network. However, many scholars lack the ability or expertise to conduct research on dark-net threat intelligence. Therefore, this paper designs a framework based on Hadoop is hidden threat intelligence. The framework uses HDFS as the underlying storage system to build a HBase-based distributed database to store and manage threat intelligence information. According to the heterogeneous type of the forum, the web crawler is used to collect data through the anonymous TOR tool. The framework is used to identify the characteristics of key dark network criminal networks, which is the basis for the later dark network research.
Blockchain is a database technology that provides the integrity and trust of the system can't make arbitrary modifications and deletions by being an append-only distributed ledger. That is, the blockchain is not a modification or deletion but a CRAB (Create-Retrieve-Append-Burn) method in which data can be read and written according to a legitimate user's access right(For example, owner private key). However, this can not delete the created data once, which causes problems such as privacy breach. In this paper, we propose an on-off block-chained Hybrid Blockchain system to separate the data and save the connection history to the blockchain. In addition, the state is changed to the distributed database separately from the ledger record, and the state is changed by generating the arbitrary injection in the XOR form, so that the history of modification / deletion of the Off Blockchain can be efficiently retrieved.