Visible to the public Biblio

Filters: Keyword is gan  [Clear All Filters]
2023-06-29
Bide, Pramod, Varun, Patil, Gaurav, Shah, Samveg, Patil, Sakshi.  2022.  Fakequipo: Deep Fake Detection. 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT). :1–5.

Deep learning have a variety of applications in different fields such as computer vision, automated self-driving cars, natural language processing tasks and many more. One of such deep learning adversarial architecture changed the fundamentals of the data manipulation. The inception of Generative Adversarial Network (GAN) in the computer vision domain drastically changed the way how we saw and manipulated the data. But this manipulation of data using GAN has found its application in various type of malicious activities like creating fake images, swapped videos, forged documents etc. But now, these generative models have become so efficient at manipulating the data, especially image data, such that it is creating real life problems for the people. The manipulation of images and videos done by the GAN architectures is done in such a way that humans cannot differentiate between real and fake images/videos. Numerous researches have been conducted in the field of deep fake detection. In this paper, we present a structured survey paper explaining the advantages, gaps of the existing work in the domain of deep fake detection.

2022-03-09
Bo, Xihao, Jing, Xiaoyang, Yang, Xiaojian.  2021.  Style Transfer Analysis Based on Generative Adversarial Networks. 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). :27—30.
Style transfer means using a neural network to extract the content of one image and the style of the other image. The two are combined to get the final result, broadly applied in social communication, animation production, entertainment items. Using style transfer, users can share and exchange images; painters can create specific art styles more readily with less creation cost and production time. Therefore, style transfer is widely concerned recently due to its various and valuable applications. In the past few years, the paper reviews style transfer and chooses three representative works to analyze in detail and contrast with each other, including StyleGAN, CycleGAN, and TL-GAN. Moreover, what function an ideal model of style transfer should realize is discussed. Compared with such a model, potential problems and prospects of different methods to achieve style transfer are listed. A couple of solutions to these drawbacks are given in the end.
Peng, Cheng, Xu, Chenning, Zhu, Yincheng.  2021.  Analysis of Neural Style Transfer Based on Generative Adversarial Network. 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). :189—192.
The goal of neural style transfer is to transform images by the deep learning method, such as changing oil paintings into sketch-style images. The Generative Adversarial Network (GAN) has made remarkable achievements in neural style transfer in recent years. At first, this paper introduces three typical neural style transfer methods, including StyleGAN, StarGAN, and Transparent Latent GAN (TL-GAN). Then, we discuss the advantages and disadvantages of these models, including the quality of the feature axis, the scale, and the model's interpretability. In addition, as the core of this paper, we put forward innovative improvements to the above models, including how to fully exploit the advantages of the above three models to derive a better style conversion model.
Yuan, Honghui, Yanai, Keiji.  2021.  Multi-Style Transfer Generative Adversarial Network for Text Images. 2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR). :63—69.
In recent years, neural style transfer have shown impressive results in deep learning. In particular, for text style transfer, recent researches have successfully completed the transition from the text font domain to the text style domain. However, for text style transfer, multiple style transfer often requires learning many models, and generating multiple styles images of texts in a single model remains an unsolved problem. In this paper, we propose a multiple style transformation network for text style transfer, which can generate multiple styles of text images in a single model and control the style of texts in a simple way. The main idea is to add conditions to the transfer network so that all the styles can be trained effectively in the network, and to control the generation of each text style through the conditions. We also optimize the network so that the conditional information can be transmitted effectively in the network. The advantage of the proposed network is that multiple styles of text can be generated with only one model and that it is possible to control the generation of text styles. We have tested the proposed network on a large number of texts, and have demonstrated that it works well when generating multiple styles of text at the same time.
2021-12-22
Kim, Jiha, Park, Hyunhee.  2021.  OA-GAN: Overfitting Avoidance Method of GAN Oversampling Based on xAI. 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN). :394–398.
The most representative method of deep learning is data-driven learning. These methods are often data-dependent, and lack of data leads to poor learning. There is a GAN method that creates a likely image as a way to solve a problem that lacks data. The GAN determines that the discriminator is fake/real with respect to the image created so that the generator learns. However, overfitting problems when the discriminator becomes overly dependent on the learning data. In this paper, we explain overfitting problem when the discriminator decides to fake/real using xAI. Depending on the area of the described image, it is possible to limit the learning of the discriminator to avoid overfitting. By doing so, the generator can produce similar but more diverse images.
2021-03-29
Peng, Y., Fu, G., Luo, Y., Hu, J., Li, B., Yan, Q..  2020.  Detecting Adversarial Examples for Network Intrusion Detection System with GAN. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :6–10.
With the increasing scale of network, attacks against network emerge one after another, and security problems become increasingly prominent. Network intrusion detection system is a widely used and effective security means at present. In addition, with the development of machine learning technology, various intelligent intrusion detection algorithms also start to sprout. By flexibly combining these intelligent methods with intrusion detection technology, the comprehensive performance of intrusion detection can be improved, but the vulnerability of machine learning model in the adversarial environment can not be ignored. In this paper, we study the defense problem of network intrusion detection system against adversarial samples. More specifically, we design a defense algorithm for NIDS against adversarial samples by using bidirectional generative adversarial network. The generator learns the data distribution of normal samples during training, which is an implicit model reflecting the normal data distribution. After training, the adversarial sample detection module calculates the reconstruction error and the discriminator matching error of sample. Then, the adversarial samples are removed, which improves the robustness and accuracy of NIDS in the adversarial environment.
Chauhan, R., Heydari, S. Shah.  2020.  Polymorphic Adversarial DDoS attack on IDS using GAN. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Intrusion Detection systems are important tools in preventing malicious traffic from penetrating into networks and systems. Recently, Intrusion Detection Systems are rapidly enhancing their detection capabilities using machine learning algorithms. However, these algorithms are vulnerable to new unknown types of attacks that can evade machine learning IDS. In particular, they may be vulnerable to attacks based on Generative Adversarial Networks (GAN). GANs have been widely used in domains such as image processing, natural language processing to generate adversarial data of different types such as graphics, videos, texts, etc. We propose a model using GAN to generate adversarial DDoS attacks that can change the attack profile and can be undetected. Our simulation results indicate that by continuous changing of attack profile, defensive systems that use incremental learning will still be vulnerable to new attacks.
2021-02-23
Liao, D., Huang, S., Tan, Y., Bai, G..  2020.  Network Intrusion Detection Method Based on GAN Model. 2020 International Conference on Computer Communication and Network Security (CCNS). :153—156.

The existing network intrusion detection methods have less label samples in the training process, and the detection accuracy is not high. In order to solve this problem, this paper designs a network intrusion detection method based on the GAN model by using the adversarial idea contained in the GAN. The model enhances the original training set by continuously generating samples, which expanding the label sample set. In order to realize the multi-classification of samples, this paper transforms the previous binary classification model of the generated adversarial network into a supervised learning multi-classification model. The loss function of training is redefined, so that the corresponding training method and parameter setting are obtained. Under the same experimental conditions, several performance indicators are used to compare the detection ability of the proposed method, the original classification model and other models. The experimental results show that the method proposed in this paper is more stable, robust, accurate detection rate, has good generalization ability, and can effectively realize network intrusion detection.

2021-02-01
Wu, L., Chen, X., Meng, L., Meng, X..  2020.  Multitask Adversarial Learning for Chinese Font Style Transfer. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.
Style transfer between Chinese fonts is challenging due to both the complexity of Chinese characters and the significant difference between fonts. Existing algorithms for this task typically learn a mapping between the reference and target fonts for each character. Subsequently, this mapping is used to generate the characters that do not exist in the target font. However, the characters available for training are unlikely to cover all fine-grained parts of the missing characters, leading to the overfitting problem. As a result, the generated characters of the target font may suffer problems of incomplete or even radicals and dirty dots. To address this problem, this paper presents a multi-task adversarial learning approach, termed MTfontGAN, to generate more vivid Chinese characters. MTfontGAN learns to transfer a reference font to multiple target ones simultaneously. An alignment is imposed on the encoders of different tasks to make them focus on the important parts of the characters in general style transfer. Such cross-task interactions at the feature level effectively improve the generalization capability of MTfontGAN. The performance of MTfontGAN is evaluated on three Chinese font datasets. Experimental results show that MTfontGAN outperforms the state-of-the-art algorithms in a single-task setting. More importantly, increasing the number of tasks leads to better performance in all of them.
2021-01-15
Korshunov, P., Marcel, S..  2019.  Vulnerability assessment and detection of Deepfake videos. 2019 International Conference on Biometrics (ICB). :1—6.
It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto pornographic videos, call for automated ways to detect these Deepfake videos. To help developing such methods, in this paper, we present the first publicly available set of Deepfake videos generated from videos of VidTIMIT database. We used open source software based on GANs to create the Deepfakes, and we emphasize that training and blending parameters can significantly impact the quality of the resulted videos. To demonstrate this impact, we generated videos with low and high visual quality (320 videos each) using differently tuned parameter sets. We showed that the state of the art face recognition systems based on VGG and Facenet neural networks are vulnerable to Deepfake videos, with 85.62% and 95.00% false acceptance rates (on high quality versions) respectively, which means methods for detecting Deepfake videos are necessary. By considering several baseline approaches, we found the best performing method based on visual quality metrics, which is often used in presentation attack detection domain, to lead to 8.97% equal error rate on high quality Deep-fakes. Our experiments demonstrate that GAN-generated Deepfake videos are challenging for both face recognition systems and existing detection methods, and the further development of face swapping technology will make it even more so.
Younus, M. A., Hasan, T. M..  2020.  Effective and Fast DeepFake Detection Method Based on Haar Wavelet Transform. 2020 International Conference on Computer Science and Software Engineering (CSASE). :186—190.
DeepFake using Generative Adversarial Networks (GANs) tampered videos reveals a new challenge in today's life. With the inception of GANs, generating high-quality fake videos becomes much easier and in a very realistic manner. Therefore, the development of efficient tools that can automatically detect these fake videos is of paramount importance. The proposed DeepFake detection method takes the advantage of the fact that current DeepFake generation algorithms cannot generate face images with varied resolutions, it is only able to generate new faces with a limited size and resolution, a further distortion and blur is needed to match and fit the fake face with the background and surrounding context in the source video. This transformation causes exclusive blur inconsistency between the generated face and its background in the outcome DeepFake videos, in turn, these artifacts can be effectively spotted by examining the edge pixels in the wavelet domain of the faces in each frame compared to the rest of the frame. A blur inconsistency detection scheme relied on the type of edge and the analysis of its sharpness using Haar wavelet transform as shown in this paper, by using this feature, it can determine if the face region in a video has been blurred or not and to what extent it has been blurred. Thus will lead to the detection of DeepFake videos. The effectiveness of the proposed scheme is demonstrated in the experimental results where the “UADFV” dataset has been used for the evaluation, a very successful detection rate with more than 90.5% was gained.
Rana, M. S., Sung, A. H..  2020.  DeepfakeStack: A Deep Ensemble-based Learning Technique for Deepfake Detection. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :70—75.
Recent advances in technology have made the deep learning (DL) models available for use in a wide variety of novel applications; for example, generative adversarial network (GAN) models are capable of producing hyper-realistic images, speech, and even videos, such as the so-called “Deepfake” produced by GANs with manipulated audio and/or video clips, which are so realistic as to be indistinguishable from the real ones in human perception. Aside from innovative and legitimate applications, there are numerous nefarious or unlawful ways to use such counterfeit contents in propaganda, political campaigns, cybercrimes, extortion, etc. To meet the challenges posed by Deepfake multimedia, we propose a deep ensemble learning technique called DeepfakeStack for detecting such manipulated videos. The proposed technique combines a series of DL based state-of-art classification models and creates an improved composite classifier. Based on our experiments, it is shown that DeepfakeStack outperforms other classifiers by achieving an accuracy of 99.65% and AUROC of 1.0 score in detecting Deepfake. Therefore, our method provides a solid basis for building a Realtime Deepfake detector.
2020-12-01
Usama, M., Asim, M., Latif, S., Qadir, J., Ala-Al-Fuqaha.  2019.  Generative Adversarial Networks For Launching and Thwarting Adversarial Attacks on Network Intrusion Detection Systems. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :78—83.

Intrusion detection systems (IDSs) are an essential cog of the network security suite that can defend the network from malicious intrusions and anomalous traffic. Many machine learning (ML)-based IDSs have been proposed in the literature for the detection of malicious network traffic. However, recent works have shown that ML models are vulnerable to adversarial perturbations through which an adversary can cause IDSs to malfunction by introducing a small impracticable perturbation in the network traffic. In this paper, we propose an adversarial ML attack using generative adversarial networks (GANs) that can successfully evade an ML-based IDS. We also show that GANs can be used to inoculate the IDS and make it more robust to adversarial perturbations.

2020-11-04
Zhang, J., Chen, J., Wu, D., Chen, B., Yu, S..  2019.  Poisoning Attack in Federated Learning using Generative Adversarial Nets. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :374—380.

Federated learning is a novel distributed learning framework, where the deep learning model is trained in a collaborative manner among thousands of participants. The shares between server and participants are only model parameters, which prevent the server from direct access to the private training data. However, we notice that the federated learning architecture is vulnerable to an active attack from insider participants, called poisoning attack, where the attacker can act as a benign participant in federated learning to upload the poisoned update to the server so that he can easily affect the performance of the global model. In this work, we study and evaluate a poisoning attack in federated learning system based on generative adversarial nets (GAN). That is, an attacker first acts as a benign participant and stealthily trains a GAN to mimic prototypical samples of the other participants' training set which does not belong to the attacker. Then these generated samples will be fully controlled by the attacker to generate the poisoning updates, and the global model will be compromised by the attacker with uploading the scaled poisoning updates to the server. In our evaluation, we show that the attacker in our construction can successfully generate samples of other benign participants using GAN and the global model performs more than 80% accuracy on both poisoning tasks and main tasks.

2020-06-01
Alshinina, Remah, Elleithy, Khaled.  2018.  A highly accurate machine learning approach for developing wireless sensor network middleware. 2018 Wireless Telecommunications Symposium (WTS). :1–7.
Despite the popularity of wireless sensor networks (WSNs) in a wide range of applications, security problems associated with them have not been completely resolved. Middleware is generally introduced as an intermediate layer between WSNs and the end user to resolve some limitations, but most of the existing middleware is unable to protect data from malicious and unknown attacks during transmission. This paper introduces an intelligent middleware based on an unsupervised learning technique called Generative Adversarial Networks (GANs) algorithm. GANs contain two networks: a generator (G) network and a detector (D) network. The G creates fake data similar to the real samples and combines it with real data from the sensors to confuse the attacker. The D contains multi-layers that have the ability to differentiate between real and fake data. The output intended for this algorithm shows an actual interpretation of the data that is securely communicated through the WSN. The framework is implemented in Python with experiments performed using Keras. Results illustrate that the suggested algorithm not only improves the accuracy of the data but also enhances its security by protecting data from adversaries. Data transmission from the WSN to the end user then becomes much more secure and accurate compared to conventional techniques.
2020-04-24
Overgaard, Jacob E. F., Hertel, Jens Christian, Pejtersen, Jens, Knott, Arnold.  2018.  Application Specific Integrated Gate-Drive Circuit for Driving Self-Oscillating Gallium Nitride Logic-Level Power Transistors. 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC). :1—6.
Wide bandgap power semiconductors are key enablers for increasing the power density of switch-mode power supplies. However, they require new gate drive technologies. This paper examines and characterizes a fabricated gate-driver in a class-E resonant inverter. The gate-driver's total area of 1.2mm2 includes two high-voltage transistors for gate-driving, integrated complementary metal-oxide-semiconductor (CMOS) gate-drivers, high-speed floating level-shifter and reset circuitry. A prototype printed circuit board (PCB) was designed to assess the implications of an electrostatic discharge (ESD) diode, its parasitic capacitance and package bondwire connections. The parasitic capacitance was estimated using its discharge time from an initial voltage and the capacitance is 56.7 pF. Both bondwires and the diode's parasitic capacitance is neglegible. The gate-driver's functional behaviour is validated using a parallel LC resonant tank resembling a self-oscillating gate-drive. Measurements and simulations show the ESD diode clamps the output voltage to a minimum of -2V.
2020-02-17
Ying, Huan, Ouyang, Xuan, Miao, Siwei, Cheng, Yushi.  2019.  Power Message Generation in Smart Grid via Generative Adversarial Network. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :790–793.
As the next generation of the power system, smart grid develops towards automated and intellectualized. Along with the benefits brought by smart grids, e.g., improved energy conversion rate, power utilization rate, and power supply quality, are the security challenges. One of the most important issues in smart grids is to ensure reliable communication between the secondary equipment. The state-of-art method to ensure smart grid security is to detect cyber attacks by deep learning. However, due to the small number of negative samples, the performance of the detection system is limited. In this paper, we propose a novel approach that utilizes the Generative Adversarial Network (GAN) to generate abundant negative samples, which helps to improve the performance of the state-of-art detection system. The evaluation results demonstrate that the proposed method can effectively improve the performance of the detection system by 4%.
2019-05-01
Tsunashima, Hideki, Hoshi, Taisei, Chen, Qiu.  2018.  DzGAN: Improved Conditional Generative Adversarial Nets Using Divided Z-Vector. Proceedings of the 2018 International Conference on Computing and Big Data. :52-55.

Conditional Generative Adversarial Nets [1](cGAN) was recently proposed as a novel conditional learning method by feeding some extra information into the network. In this paper we propose an improved conditional GANs which use divided z-vector (DzGAN). The computation amount will be reduced because DzGAN can implement conditional learning using not images but one-hot vector by dividing the range of z-vector (e.g. -1\textasciitilde1 to -1\textasciitilde0 and 0\textasciitilde1). In the DzGAN, the discriminator is fed by the images with label using one-hot vector and the generator is fed by divided z-vector (e.g. there are 10 classes In MNIST dataset, the divided z-vector will be z1\textasciitildez10 accordingly) with corresponding label fed into the discriminator, thus we can implement conditional learning. In this paper we use conditional Deep Convolutional Generative Adversarial Networks (cDCGAN) [7] instead of cGAN because cDCGAN can generate clear image better than cGAN. Heuristic experiments of conditional learning which compare the computation amount demonstrate that DzGAN is superior than cDCGAN.

2018-11-19
Guo, Longteng, Liu, Jing, Wang, Yuhang, Luo, Zhonghua, Wen, Wei, Lu, Hanqing.  2017.  Sketch-Based Image Retrieval Using Generative Adversarial Networks. Proceedings of the 25th ACM International Conference on Multimedia. :1267–1268.

For sketch-based image retrieval (SBIR), we propose a generative adversarial network trained on a large number of sketches and their corresponding real images. To imitate human search process, we attempt to match candidate images with theimaginary image in user single s mind instead of the sketch query, i.e., not only the shape information of sketches but their possible content information are considered in SBIR. Specifically, a conditional generative adversarial network (cGAN) is employed to enrich the content information of sketches and recover the imaginary images, and two VGG-based encoders, which work on real and imaginary images respectively, are used to constrain their perceptual consistency from the view of feature representations. During SBIR, we first generate an imaginary image from a given sketch via cGAN, and then take the output of the learned encoder for imaginary images as the feature of the query sketch. Finally, we build an interactive SBIR system that shows encouraging performance.