Biblio
Most anti-collusion audio fingerprinting schemes are aiming at finding colluders from the illegal redistributed audio copies. However, the loss caused by the redistributed versions is inevitable. In this letter, a novel fingerprinting scheme is proposed to eliminate the motivation of collusion attack. The audio signal is transformed to the frequency domain by the Fourier transform, and the coefficients in frequency domain are reversed in different degrees according to the fingerprint sequence. Different from other fingerprinting schemes, the coefficients of the host media are excessively modified by the proposed method in order to reduce the quality of the colluded version significantly, but the imperceptibility is well preserved. Experiments show that the colluded audio cannot be reused because of the poor quality. In addition, the proposed method can also resist other common attacks. Various kinds of copyright risks and losses caused by the illegal redistribution are effectively avoided, which is significant for protecting the copyright of audio.
In the current society, people pay more and more attention to identity security, especially in the case of some highly confidential or personal privacy, one-to-one identification is particularly important. The iris recognition just has the characteristics of high efficiency, not easy to be counterfeited, etc., which has been promoted as an identity technology. This paper has carried out research on daugman algorithm and iris edge detection.
Every so often Humans utilize non-verbal gestures (e.g. facial expressions) to express certain information or emotions. Moreover, countless face gestures are expressed throughout the day because of the capabilities possessed by humans. However, the channels of these expression/emotions can be through activities, postures, behaviors & facial expressions. Extensive research unveiled that there exists a strong relationship between the channels and emotions which has to be further investigated. An Automatic Facial Expression Recognition (AFER) framework has been proposed in this work that can predict or anticipate seven universal expressions. In order to evaluate the proposed approach, Frontal face Image Database also named as Japanese Female Facial Expression (JAFFE) is opted as input. This database is further processed with a frequency domain technique known as Discrete Cosine transform (DCT) and then classified using Artificial Neural Networks (ANN). So as to check the robustness of this novel strategy, the random trial of K-fold cross validation, leave one out and person independent methods is repeated many times to provide an overview of recognition rates. The experimental results demonstrate a promising performance of this application.
This paper presents an image technique Discrete Wavelet Transform and Singular Value Decomposition for image steganography. We are using a text file and convert into an image as watermark and embed watermarks into the cover image. We evaluate performance and compare this method with other methods like Least Significant Bit, Discrete Cosine Transform, and Discrete Wavelet Transform using Peak Signal Noise Ratio and Mean Squared Error. The result of this experiment showed that combine of Discrete Wavelet Transform and Singular Value Decomposition performance is better than the Least Significant Bit, Discrete Cosine Transform, and Discrete Wavelet Transform. The result of Peak Signal Noise Ratio obtained from Discrete Wavelet Transform and Singular Value Decomposition method is 57.0519 and 56.9520 while the result of Mean Squared Error is 0.1282 and 0.1311. Future work for this research is to add the encryption method on the data to be entered so that if there is an attack then the encryption method can secure the data becomes more secure.
Indoor localization of unknown acoustic events with MEMS microphone arrays have a huge potential in applications like home assisted living and surveillance. This article presents an Angle of Arrival (AoA) fingerprinting method for use in Wireless Acoustic Sensor Networks (WASNs) with low-profile microphone arrays. In a first research phase, acoustic measurements are performed in an anechoic room to evaluate two computationally efficient time domain delay-based AoA algorithms: one based on dot product calculations and another based on dot products with a PHAse Transform (PHAT). The evaluation of the algorithms is conducted with two sound events: white noise and a female voice. The algorithms are able to calculate the AoA with Root Mean Square Errors (RMSEs) of 3.5° for white noise and 9.8° to 16° for female vocal sounds. In the second research phase, an AoA fingerprinting algorithm is developed for acoustic event localization. The proposed solution is experimentally verified in a room of 4.25 m by 9.20 m with 4 acoustic sensor nodes. Acoustic fingerprints of white noise, recorded along a predefined grid in the room, are used to localize white noise and vocal sounds. The localization errors are evaluated using one node at a time, resulting in mean localization errors between 0.65 m and 0.98 m for white noise and between 1.18 m and 1.52 m for vocal sounds.
The new criterion for selecting the frequencies of the test polyharmonic signals is developed. It allows uniquely filtering the values of multidimensional transfer functions - Fourier-images of Volterra kernel from the partial component of the response of a nonlinear system. It is shown that this criterion significantly weakens the known limitations on the choice of frequencies and, as a result, reduces the number of interpolations during the restoration of the transfer function, and, the more significant, the higher the order of estimated transfer function.
In a spectrally congested environment or a spectrally contested environment which often occurs in cyber security applications, multiple signals are often mixed together with significant overlap in spectrum. This makes the signal detection and parameter estimation task very challenging. In our previous work, we have demonstrated the feasibility of using a second order spectrum correlation function (SCF) cyclostationary feature to perform mixed signal detection and parameter estimation. In this paper, we present our recent work on software defined radio (SDR) based implementation and demonstration of such mixed signal detection algorithms. Specifically, we have developed a software defined radio based mixed RF signal generator to generate mixed RF signals in real time. A graphical user interface (GUI) has been developed to allow users to conveniently adjust the number of mixed RF signal components, the amplitude, initial time delay, initial phase offset, carrier frequency, symbol rate, modulation type, and pulse shaping filter of each RF signal component. This SDR based mixed RF signal generator is used to transmit desirable mixed RF signals to test the effectiveness of our developed algorithms. Next, we have developed a software defined radio based mixed RF signal detector to perform the mixed RF signal detection. Similarly, a GUI has been developed to allow users to easily adjust the center frequency and bandwidth of band of interest, perform time domain analysis, frequency domain analysis, and cyclostationary domain analysis.
Tamper detection circuits provide the first and most important defensive wall in protecting electronic modules containing security data. A widely used procedure is to cover the entire module with a foil containing fine conductive mesh, which detects intrusion attempts. Detection circuits are further classified as passive or active. Passive circuits have the advantage of low power consumption, however they are unable to detect small variations in the conductive mesh parameters. Since modern tools provide an upper leverage over the passive method, the most efficient way to protect security modules is thus to use active circuits. The active tamper detection circuits are typically probing the conductive mesh with short pulses, analyzing its response in terms of delay and shape. The method proposed in this paper generates short pulses at one end of the mesh and analyzes the response at the other end. Apart from measuring pulse delay, the analysis includes a frequency domain characterization of the system, determining whether there has been an intrusion or not, by comparing it to a reference (un-tampered with) spectrum. The novelty of this design is the combined analysis, in time and frequency domains, of the small variations in mesh characteristic parameters.
Transform based image steganography methods are commonly used in security applications. However, the application of several recent transforms for image steganography remains unexplored. This paper presents bit-plane based steganography method using different transforms. In this work, the bit-plane of the transform coefficients is selected to embed the secret message. The characteristics of four transforms used in the steganography have been analyzed and the results of the four transforms are compared. This has been proven in the experimental results.