Visible to the public Biblio

Filters: Keyword is Solid modeling  [Clear All Filters]
2021-11-29
McKenzie, Thomas, Schlecht, Sebastian J., Pulkki, Ville.  2021.  Acoustic Analysis and Dataset of Transitions Between Coupled Rooms. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :481–485.
The measurement of room acoustics plays a wide role in audio research, from physical acoustics modelling and virtual reality applications to speech enhancement. While vast literature exists on position-dependent room acoustics and coupling of rooms, little has explored the transition from one room to its neighbour. This paper presents the measurement and analysis of a dataset of spatial room impulse responses for the transition between four coupled room pairs. Each transition consists of 101 impulse responses recorded using a fourth-order spherical microphone array in 5 cm intervals, both with and without a continuous line-of-sight between the source and microphone. A numerical analysis of the room transitions is then presented, including direct-to-reverberant ratio and direction of arrival estimations, along with potential applications and uses of the dataset.
2021-05-05
Kumar, Rahul, Sethi, Kamalakanta, Prajapati, Nishant, Rout, Rashmi Ranjan, Bera, Padmalochan.  2020.  Machine Learning based Malware Detection in Cloud Environment using Clustering Approach. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.

Enforcing security and resilience in a cloud platform is an essential but challenging problem due to the presence of a large number of heterogeneous applications running on shared resources. A security analysis system that can detect threats or malware must exist inside the cloud infrastructure. Much research has been done on machine learning-driven malware analysis, but it is limited in computational complexity and detection accuracy. To overcome these drawbacks, we proposed a new malware detection system based on the concept of clustering and trend micro locality sensitive hashing (TLSH). We used Cuckoo sandbox, which provides dynamic analysis reports of files by executing them in an isolated environment. We used a novel feature extraction algorithm to extract essential features from the malware reports obtained from the Cuckoo sandbox. Further, the most important features are selected using principal component analysis (PCA), random forest, and Chi-square feature selection methods. Subsequently, the experimental results are obtained for clustering and non-clustering approaches on three classifiers, including Decision Tree, Random Forest, and Logistic Regression. The model performance shows better classification accuracy and false positive rate (FPR) as compared to the state-of-the-art works and non-clustering approach at significantly lesser computation cost.

2021-02-03
Velaora, M., Roy, R. van, Guéna, F..  2020.  ARtect, an augmented reality educational prototype for architectural design. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :110—115.

ARtect is an Augmented Reality application developed with Unity 3D, which envisions an educational interactive and immersive tool for architects, designers, researchers, and artists. This digital instrument renders the competency to visualize custom-made 3D models and 2D graphics in interior and exterior environments. The user-friendly interface offers an accurate insight before the materialization of any architectural project, enabling evaluation of the design proposal. This practice could be integrated into learning architectural design process, saving resources of printed drawings, and 3D carton models during several stages of spatial conception.

2020-12-11
Friedrich, T., Menzel, S..  2019.  Standardization of Gram Matrix for Improved 3D Neural Style Transfer. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :1375—1382.

Neural Style Transfer based on convolutional neural networks has produced visually appealing results for image and video data in the recent years where e.g. the content of a photo and the style of a painting are merged to a novel piece of digital art. In practical engineering development, we utilize 3D objects as standard for optimizing digital shapes. Since these objects can be represented as binary 3D voxel representation, we propose to extend the Neural Style Transfer method to 3D geometries in analogy to 2D pixel representations. In a series of experiments, we first evaluate traditional Neural Style Transfer on 2D binary monochromatic images. We show that this method produces reasonable results on binary images lacking color information and even improve them by introducing a standardized Gram matrix based loss function for style. For an application of Neural Style Transfer on 3D voxel primitives, we trained several classifier networks demonstrating the importance of a meaningful convolutional network architecture. The standardization of the Gram matrix again strongly contributes to visually improved, less noisy results. We conclude that Neural Style Transfer extended by a standardization of the Gram matrix is a promising approach for generating novel 3D voxelized objects and expect future improvements with increasing graphics memory availability for finer object resolutions.

2020-12-01
Shahriar, M. R., Sunny, S. M. N. A., Liu, X., Leu, M. C., Hu, L., Nguyen, N..  2018.  MTComm Based Virtualization and Integration of Physical Machine Operations with Digital-Twins in Cyber-Physical Manufacturing Cloud. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :46—51.

Digital-Twins simulate physical world objects by creating 'as-is' virtual images in a cyberspace. In order to create a well synchronized digital-twin simulator in manufacturing, information and activities of a physical machine need to be virtualized. Many existing digital-twins stream read-only data of machine sensors and do not incorporate operations of manufacturing machines through Internet. In this paper, a new method of virtualization is proposed to integrate machining data and operations into the digital-twins using Internet scale machine tool communication method. A fully functional digital-twin is implemented in CPMC testbed using MTComm and several manufacturing application scenarios are developed to evaluate the proposed method and system. Performance analysis shows that it is capable of providing data-driven visual monitoring of a manufacturing process and performing manufacturing operations through digital twins over the Internet. Results of the experiments also shows that the MTComm based digital twins have an excellent efficiency.

2020-11-09
Sengupta, A., Ashraf, M., Nabeel, M., Sinanoglu, O..  2018.  Customized Locking of IP Blocks on a Multi-Million-Gate SoC. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–7.
Reliance on off-site untrusted fabrication facilities has given rise to several threats such as intellectual property (IP) piracy, overbuilding and hardware Trojans. Logic locking is a promising defense technique against such malicious activities that is effected at the silicon layer. Over the past decade, several logic locking defenses and attacks have been presented, thereby, enhancing the state-of-the-art. Nevertheless, there has been little research aiming to demonstrate the applicability of logic locking with large-scale multi-million-gate industrial designs consisting of multiple IP blocks with different security requirements. In this work, we take on this challenge to successfully lock a multi-million-gate system-on-chip (SoC) provided by DARPA by taking it all the way to GDSII layout. We analyze how specific features, constraints, and security requirements of an IP block can be leveraged to lock its functionality in the most appropriate way. We show that the blocks of an SoC can be locked in a customized manner at 0.5%, 15.3%, and 1.5% chip-level overhead in power, performance, and area, respectively.
2020-06-19
Ly, Son Thai, Do, Nhu-Tai, Lee, Guee-Sang, Kim, Soo-Hyung, Yang, Hyung-Jeong.  2019.  A 3d Face Modeling Approach for in-The-Wild Facial Expression Recognition on Image Datasets. 2019 IEEE International Conference on Image Processing (ICIP). :3492—3496.

This paper explores the benefits of 3D face modeling for in-the-wild facial expression recognition (FER). Since there is limited in-the-wild 3D FER dataset, we first construct 3D facial data from available 2D dataset using recent advances in 3D face reconstruction. The 3D facial geometry representation is then extracted by deep learning technique. In addition, we also take advantage of manipulating the 3D face, such as using 2D projected images of 3D face as additional input for FER. These features are then fused with that of 2D FER typical network. By doing so, despite using common approaches, we achieve a competent recognition accuracy on Real-World Affective Faces (RAF) database and Static Facial Expressions in the Wild (SFEW 2.0) compared with the state-of-the-art reports. To the best of our knowledge, this is the first time such a deep learning combination of 3D and 2D facial modalities is presented in the context of in-the-wild FER.

2020-06-04
Gupta, Avinash, Cecil, J., Tapia, Oscar, Sweet-Darter, Mary.  2019.  Design of Cyber-Human Frameworks for Immersive Learning. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :1563—1568.

This paper focuses on the creation of information centric Cyber-Human Learning Frameworks involving Virtual Reality based mediums. A generalized framework is proposed, which is adapted for two educational domains: one to support education and training of residents in orthopedic surgery and the other focusing on science learning for children with autism. Users, experts and technology based mediums play a key role in the design of such a Cyber-Human framework. Virtual Reality based immersive and haptic mediums were two of the technologies explored in the implementation of the framework for these learning domains. The proposed framework emphasizes the importance of Information-Centric Systems Engineering (ICSE) principles which emphasizes a user centric approach along with formalizing understanding of target subjects or processes for which the learning environments are being created.

Gulhane, Aniket, Vyas, Akhil, Mitra, Reshmi, Oruche, Roland, Hoefer, Gabriela, Valluripally, Samaikya, Calyam, Prasad, Hoque, Khaza Anuarul.  2019.  Security, Privacy and Safety Risk Assessment for Virtual Reality Learning Environment Applications. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1—9.

Social Virtual Reality based Learning Environments (VRLEs) such as vSocial render instructional content in a three-dimensional immersive computer experience for training youth with learning impediments. There are limited prior works that explored attack vulnerability in VR technology, and hence there is a need for systematic frameworks to quantify risks corresponding to security, privacy, and safety (SPS) threats. The SPS threats can adversely impact the educational user experience and hinder delivery of VRLE content. In this paper, we propose a novel risk assessment framework that utilizes attack trees to calculate a risk score for varied VRLE threats with rate and duration of threats as inputs. We compare the impact of a well-constructed attack tree with an adhoc attack tree to study the trade-offs between overheads in managing attack trees, and the cost of risk mitigation when vulnerabilities are identified. We use a vSocial VRLE testbed in a case study to showcase the effectiveness of our framework and demonstrate how a suitable attack tree formalism can result in a more safer, privacy-preserving and secure VRLE system.

2020-04-24
Rahman, Lamiya, Adan, Jannatul, Nahid-AI-Masood, Deeba, Shohana Rahman.  2018.  Performance Analysis of Floating Buoy Point Absorber and Oscillating Surge Wave Energy Converters in Onshore and Offshore Locations. 2018 10th International Conference on Electrical and Computer Engineering (ICECE). :233—236.

The aim of this paper is to explore the performance of two well-known wave energy converters (WECs) namely Floating Buoy Point Absorber (FBPA) and Oscillating Surge (OS) in onshore and offshore locations. To achieve clean energy targets by reducing greenhouse gas emissions, integration of renewable energy resources is continuously increasing all around the world. In addition to widespread renewable energy source such as wind and solar photovoltaic (PV), wave energy extracted from ocean is becoming more tangible day by day. In the literature, a number of WEC devices are reported. However, further investigations are still needed to better understand the behaviors of FBPA WEC and OS WEC under irregular wave conditions in onshore and offshore locations. Note that being surrounded by Bay of Bengal, Bangladesh has huge scope of utilizing wave power. To this end, FBPA WEC and OS WEC are simulated using the typical onshore and offshore wave height and wave period of the coastal area of Bangladesh. Afterwards, performances of the aforementioned two WECs are compared by analyzing their power output.

2019-01-21
Belikovetsky, S., Solewicz, Y., Yampolskiy, M., Toh, J., Elovici, Y..  2018.  Digital Audio Signature for 3D Printing Integrity. IEEE Transactions on Information Forensics and Security. :1–1.

Additive manufacturing (AM, or 3D printing) is a novel manufacturing technology that has been adopted in industrial and consumer settings. However, the reliance of this technology on computerization has raised various security concerns. In this paper, we address issues associated with sabotage via tampering during the 3D printing process by presenting an approach that can verify the integrity of a 3D printed object. Our approach operates on acoustic side-channel emanations generated by the 3D printer’s stepper motors, which results in a non-intrusive and real-time validation process that is difficult to compromise. The proposed approach constitutes two algorithms. The first algorithm is used to generate a master audio fingerprint for the verifiable unaltered printing process. The second algorithm is applied when the same 3D object is printed again, and this algorithm validates the monitored 3D printing process by assessing the similarity of its audio signature with the master audio fingerprint. To evaluate the quality of the proposed thresholds, we identify the detectability thresholds for the following minimal tampering primitives: insertion, deletion, replacement, and modification of a single tool path command. By detecting the deviation at the time of occurrence, we can stop the printing process for compromised objects, thus saving time and preventing material waste. We discuss various factors that impact the method, such as background noise, audio device changes and different audio recorder positions.

2018-04-11
Esirci, F. N., Bayrakci, A. A..  2017.  Hardware Trojan Detection Based on Correlated Path Delays in Defiance of Variations with Spatial Correlations. Design, Automation Test in Europe Conference Exhibition (DATE), 2017. :163–168.

Hardware Trojan (HT) detection methods based on the side channel analysis deeply suffer from the process variations. In order to suppress the effect of the variations, we devise a method that smartly selects two highly correlated paths for each interconnect (edge) that is suspected to have an HT on it. First path is the shortest one passing through the suspected edge and the second one is a path that is highly correlated with the first one. Delay ratio of these paths avails the detection of the HT inserted circuits. Test results reveal that the method enables the detection of even the minimally invasive Trojans in spite of both inter and intra die variations with the spatial correlations.

2018-02-02
Zha, X., Wang, X., Ni, W., Liu, R. P., Guo, Y. J., Niu, X., Zheng, K..  2017.  Analytic model on data security in VANETs. 2017 17th International Symposium on Communications and Information Technologies (ISCIT). :1–6.

Fast-changing topologies and uncoordinated transmissions are two critical challenges of implementing data security in vehicular ad-hoc networks (VANETs). We propose a new protocol, where transmitters adaptively switch between backing off retransmissions and changing keys to improve success rate. A new 3-dimensional (3-D) Markov model, which can analyze the proposed protocol with symmetric or asymmetric keys in terms of data security and connectivity, is developed. Analytical results, validated by simulations, show that the proposed protocol achieves substantially improved resistance against collusion attacks.

2015-05-01
Lu Wang, Yung, N.H.C., Lisheng Xu.  2014.  Multiple-Human Tracking by Iterative Data Association and Detection Update. Intelligent Transportation Systems, IEEE Transactions on. 15:1886-1899.

Multiple-object tracking is an important task in automated video surveillance. In this paper, we present a multiple-human-tracking approach that takes the single-frame human detection results as input and associates them to form trajectories while improving the original detection results by making use of reliable temporal information in a closed-loop manner. It works by first forming tracklets, from which reliable temporal information is extracted, and then refining the detection responses inside the tracklets, which also improves the accuracy of tracklets' quantities. After this, local conservative tracklet association is performed and reliable temporal information is propagated across tracklets so that more detection responses can be refined. The global tracklet association is done last to resolve association ambiguities. Experimental results show that the proposed approach improves both the association and detection results. Comparison with several state-of-the-art approaches demonstrates the effectiveness of the proposed approach.