Visible to the public Biblio

Filters: Keyword is location awareness  [Clear All Filters]
2023-08-25
Akshara Vemuri, Sai, Krishna Chaitanya, Gogineni.  2022.  Insider Attack Detection and Prevention using Server Authentication using Elgamal Encryption. 2022 International Conference on Inventive Computation Technologies (ICICT). :967—972.
Web services are growing demand with fundamental advancements and have given more space to researchers for improving security of all real world applications. Accessing and get authenticated in many applications on web services, user discloses their password and other privacy data to the server for authentication purposes. These shared information should be maintained by the server with high security, otherwise it can be used for illegal purposes for any authentication breach. Protecting the applications from various attacks is more important. Comparing the security threats, insider attacks are most challenging to identify due to the fact that they use the authentication of legitimate users and their privileges to access the application and may cause serious threat to the application. Insider attacks has been studied in previous researchers with different security measures, however there is no much strong work proposed. Various security protocols were proposed for defending insider attackers. The proposed work focused on insider attack protection through Elgamal cryptography technique. The proposed work is much effective on insider attacks and also defends against various attacks. The proposed protocol is better than existing works. The key computation cost and communication cost is relatively low in this proposed work. The proposed work authenticates the application by parallel process of two way authentication mechanism through Elgamal algorithm.
2023-07-21
Almutairi, Mishaal M., Apostolopoulou, Dimitra, Halikias, George, Abi Sen, Adnan Ahmed, Yamin, Mohammad.  2022.  Enhancing Privacy and Security in Crowds using Fog Computing. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :57—62.
Thousands of crowded events take place every year. Often, management does not properly implement and manage privacy and security of data of the participants and personnel of the events. Crowds are also prone to significant security issues and become vulnerable to terrorist attacks. The aim of this paper is to propose a privacy and security framework for large, crowded events like the Hajj, Kumbh, Arba'een, and many sporting events and musical concerts. The proposed framework uses the latest technologies including Internet of Things, and Fog computing, especially in the Location based Services environments. The proposed framework can also be adapted for many other scenarios and situations.
2023-06-09
Plambeck, Swantje, Fey, Görschwin, Schyga, Jakob, Hinckeldeyn, Johannes, Kreutzfeldt, Jochen.  2022.  Explaining Cyber-Physical Systems Using Decision Trees. 2022 2nd International Workshop on Computation-Aware Algorithmic Design for Cyber-Physical Systems (CAADCPS). :3—8.
Cyber-Physical Systems (CPS) are systems that contain digital embedded devices while depending on environmental influences or external configurations. Identifying relevant influences of a CPS as well as modeling dependencies on external influences is difficult. We propose to learn these dependencies with decision trees in combination with clustering. The approach allows to automatically identify relevant influences and receive a data-related explanation of system behavior involving the system's use-case. Our paper presents a case study of our method for a Real-Time Localization System (RTLS) proving the usefulness of our approach, and discusses further applications of a learned decision tree.
2023-05-12
Luo, Man, Yan, Hairong.  2022.  A graph anonymity-based privacy protection scheme for smart city scenarios. 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC ). :489–492.
The development of science and technology has led to the construction of smart cities, and in this scenario, there are many applications that need to provide their real-time location information, which is very likely to cause the leakage of personal location privacy. To address this situation, this paper designs a location privacy protection scheme based on graph anonymity, which is based on the privacy protection idea of K-anonymity, and represents the spatial distribution among APs in the form of a graph model, using the method of finding clustered noisy fingerprint information in the graph model to ensure a similar performance to the real location fingerprint in the localization process, and thus will not be distinguished by the location providers. Experiments show that this scheme can improve the effectiveness of virtual locations and reduce the time cost using greedy strategy, which can effectively protect location privacy.
ISSN: 2689-6621
2023-03-31
Yang, Jing, Yang, Yibiao, Sun, Maolin, Wen, Ming, Zhou, Yuming, Jin, Hai.  2022.  Isolating Compiler Optimization Faults via Differentiating Finer-grained Options. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :481–491.

Code optimization is an essential feature for compilers and almost all software products are released by compiler optimizations. Consequently, bugs in code optimization will inevitably cast significant impact on the correctness of software systems. Locating optimization bugs in compilers is challenging as compilers typically support a large amount of optimization configurations. Although prior studies have proposed to locate compiler bugs via generating witness test programs, they are still time-consuming and not effective enough. To address such limitations, we propose an automatic bug localization approach, ODFL, for locating compiler optimization bugs via differentiating finer-grained options in this study. Specifically, we first disable the fine-grained options that are enabled by default under the bug-triggering optimization levels independently to obtain bug-free and bug-related fine-grained options. We then configure several effective passing and failing optimization sequences based on such fine-grained options to obtain multiple failing and passing compiler coverage. Finally, such generated coverage information can be utilized via Spectrum-Based Fault Localization formulae to rank the suspicious compiler files. We run ODFL on 60 buggy GCC compilers from an existing benchmark. The experimental results show that ODFL significantly outperforms the state-of-the-art compiler bug isolation approach RecBi in terms of all the evaluated metrics, demonstrating the effectiveness of ODFL. In addition, ODFL is much more efficient than RecBi as it can save more than 88% of the time for locating bugs on average.

ISSN: 1534-5351

2023-02-24
Golam, Mohtasin, Akter, Rubina, Naufal, Revin, Doan, Van-Sang, Lee, Jae-Min, Kim, Dong-Seong.  2022.  Blockchain Inspired Intruder UAV Localization Using Lightweight CNN for Internet of Battlefield Things. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :342—349.
On the Internet of Battlefield Things (IoBT), unmanned aerial vehicles (UAVs) provide significant operational advantages. However, the exploitation of the UAV by an untrustworthy entity might lead to security violations or possibly the destruction of crucial IoBT network functionality. The IoBT system has substantial issues related to data tampering and fabrication through illegal access. This paper proposes the use of an intelligent architecture called IoBT-Net, which is built on a convolution neural network (CNN) and connected with blockchain technology, to identify and trace illicit UAV in the IoBT system. Data storage on the blockchain ledger is protected from unauthorized access, data tampering, and invasions. Conveniently, this paper presents a low complexity and robustly performed CNN called LRCANet to estimate AOA for object localization. The proposed LRCANet is efficiently designed with two core modules, called GFPU and stacks, which are cleverly organized with regular and point convolution layers, a max pool layer, and a ReLU layer associated with residual connectivity. Furthermore, the effectiveness of LRCANET is evaluated by various network and array configurations, RMSE, and compared with the accuracy and complexity of the existing state-of-the-art. Additionally, the implementation of tailored drone-based consensus is evaluated in terms of three major classes and compared with the other existing consensus.
2023-02-17
Morón, Paola Torrico, Salimi, Salma, Queralta, Jorge Peña, Westerlund, Tomi.  2022.  UWB Role Allocation with Distributed Ledger Technologies for Scalable Relative Localization in Multi-Robot Systems. 2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE). :1–8.
Systems for relative localization in multi-robot systems based on ultra-wideband (UWB) ranging have recently emerged as robust solutions for GNSS-denied environments. Scalability remains one of the key challenges, particularly in adhoc deployments. Recent solutions include dynamic allocation of active and passive localization modes for different robots or nodes in the system. with larger-scale systems becoming more distributed, key research questions arise in the areas of security and trustability of such localization systems. This paper studies the potential integration of collaborative-decision making processes with distributed ledger technologies. Specifically, we investigate the design and implementation of a methodology for running an UWB role allocation algorithm within smart contracts in a blockchain. In previous works, we have separately studied the integration of ROS2 with the Hyperledger Fabric blockchain, and introduced a new algorithm for scalable UWB-based localization. In this paper, we extend these works by (i) running experiments with larger number of mobile robots switching between different spatial configurations and (ii) integrating the dynamic UWB role allocation algorithm into Fabric smart contracts for distributed decision-making in a system of multiple mobile robots. This enables us to deliver the same functionality within a secure and trustable process, with enhanced identity and data access management. Our results show the effectiveness of the UWB role allocation for continuously varying spatial formations of six autonomous mobile robots, while demonstrating a low impact on latency and computational resources of adding the blockchain layer that does not affect the localization process.
2023-02-02
Shi, Haoxiang, Liu, Wu, Liu, Jingyu, Ai, Jun, Yang, Chunhui.  2022.  A Software Defect Location Method based on Static Analysis Results. 2022 9th International Conference on Dependable Systems and Their Applications (DSA). :876–886.

Code-graph based software defect prediction methods have become a research focus in SDP field. Among them, Code Property Graph is used as a form of data representation for code defects due to its ability to characterize the structural features and dependencies of defect codes. However, since the coarse granularity of Code Property Graph, redundant information which is not related to defects often attached to the characterization of software defects. Thus, it is a problem to be solved in how to locate software defects at a finer granularity in Code Property Graph. Static analysis is a technique for identifying software defects using set defect rules, and there are many proven static analysis tools in the industry. In this paper, we propose a method for locating specific types of defects in the Code Property Graph based on the result of static analysis tool. Experiments show that the location method based on static analysis results can effectively predict the location of specific defect types in real software program.

2023-01-13
Zhang, Xing, Chen, Jiongyi, Feng, Chao, Li, Ruilin, Diao, Wenrui, Zhang, Kehuan, Lei, Jing, Tang, Chaojing.  2022.  Default: Mutual Information-based Crash Triage for Massive Crashes. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :635—646.
With the considerable success achieved by modern fuzzing in-frastructures, more crashes are produced than ever before. To dig out the root cause, rapid and faithful crash triage for large numbers of crashes has always been attractive. However, hindered by the practical difficulty of reducing analysis imprecision without compromising efficiency, this goal has not been accomplished. In this paper, we present an end-to-end crash triage solution Default, for accurately and quickly pinpointing unique root cause from large numbers of crashes. In particular, we quantify the “crash relevance” of program entities based on mutual information, which serves as the criterion of unique crash bucketing and allows us to bucket massive crashes without pre-analyzing their root cause. The quantification of “crash relevance” is also used in the shortening of long crashing traces. On this basis, we use the interpretability of neural networks to precisely pinpoint the root cause in the shortened traces by evaluating each basic block's impact on the crash label. Evaluated with 20 programs with 22216 crashes in total, Default demonstrates remarkable accuracy and performance, which is way beyond what the state-of-the-art techniques can achieve: crash de-duplication was achieved at a super-fast processing speed - 0.017 seconds per crashing trace, without missing any unique bugs. After that, it identifies the root cause of 43 unique crashes with no false negatives and an average false positive rate of 9.2%.
2023-01-05
Bouchiba, Nouha, Kaddouri, Azeddine.  2022.  Fault detection and localization based on Decision Tree and Support vector machine algorithms in electrical power transmission network. 2022 2nd International Conference on Advanced Electrical Engineering (ICAEE). :1—6.
This paper introduces an application of machine learning algorithms. In fact, support vector machine and decision tree approaches are studied and applied to compare their performances in detecting, classifying, and locating faults in the transmission network. The IEEE 14-bus transmission network is considered in this work. Besides, 13 types of faults are tested. Particularly, the one fault and the multiple fault cases are investigated and tested separately. Fault simulations are performed using the SimPowerSystems toolbox in Matlab. Basing on the accuracy score, a comparison is made between the proposed approaches while testing simple faults, on the one hand, and when complicated faults are integrated, on the other hand. Simulation results prove that the support vector machine technique can achieve an accuracy of 87% compared to the decision tree which had an accuracy of 53% in complicated cases.
2022-12-09
Das, Anwesha, Ratner, Daniel, Aiken, Alex.  2022.  Performance Variability and Causality in Complex Systems. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :19—24.
Anomalous behaviour in subsystems of complex machines often affect overall performance even without failures. We devise unsupervised methods to detect times with degraded performance, and localize correlated signals, evaluated on a system with over 4000 monitored signals. From incidents comprising both downtimes and degraded performance, our approach localizes relevant signals within 1.2% of the parameter space.
2022-07-14
Lei Lei, Joanna Tan, Chuin, Liew Siau, Ernawan, Ferda.  2021.  An Image Watermarking based on Multi-level Authentication for Quick Response Code. 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :417–422.
This research presented a digital watermarking scheme using multi-level authentication for protecting QR code images in order to provide security and authenticity. This research focuses on the improved digital watermarking scheme for QR code security that can protect the confidentiality of the information stored in QR code images from the public. Information modification, malicious attack, and copyright violation may occur due to weak security and disclosure pattern of QR code. Digital watermarking can be a solution to reduce QR code imitation and increase QR code security and authenticity. The objectives of this research are to provide QR code image authentication and security, tamper localization, and recovery scheme on QR code images. This research proposed digital watermarking for QR code images based on multi-level authentication with Least Significant Bit (LSB) and SHA-256 hash function. The embedding and extracting watermark utilized region of Interest (ROI) and Region of Non-Interest (RONI) in the spatial domain for improving the depth and width of QR code application in the anti-counterfeiting field. The experiments tested the reversibility and robustness of the proposed scheme after a tempered watermarked QR code image. The experimental results show that the proposed scheme provides multi-level security, withstands tampered attacks and it provided high imperceptibility of QR code image.
2022-05-19
Sabeena, M, Abraham, Lizy, Sreelekshmi, P R.  2021.  Copy-move Image Forgery Localization Using Deep Feature Pyramidal Network. 2021 International Conference on Advances in Computing and Communications (ICACC). :1–6.
Fake news, frequently making use of tampered photos, has currently emerged as a global epidemic, mainly due to the widespread use of social media as a present alternative to traditional news outlets. This development is often due to the swiftly declining price of advanced cameras and phones, which prompts the simple making of computerized pictures. The accessibility and usability of picture-altering softwares make picture-altering or controlling processes significantly simple, regardless of whether it is for the blameless or malicious plan. Various investigations have been utilized around to distinguish this sort of controlled media to deal with this issue. This paper proposes an efficient technique of copy-move forgery detection using the deep learning method. Two deep learning models such as Buster Net and VGG with FPN are used here to detect copy move forgery in digital images. The two models' performance is evaluated using the CoMoFoD dataset. The experimental result shows that VGG with FPN outperforms the Buster Net model for detecting forgery in images with an accuracy of 99.8% whereas the accuracy for the Buster Net model is 96.9%.
2022-05-06
Hariyale, Ashish, Thawre, Aakriti, Chandavarkar, B. R..  2021.  Mitigating unsecured data forwarding related attack of underwater sensor network. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—5.
To improve communication underwater, the underwater sensor networks (UWSN) provide gains for many different underwater applications, like Underwater Data-centers, Aquatic Monitoring, Tsunami Monitoring Systems, Aquatic Monitoring, Underwater Oil Field Discovery, Submarine Target Localization, Surveilling Water Territory of the Country via UWSN, Submarine Target Localization and many more. underwater applications are dependent on secure data communication in an underwater environment, so Data transmission in Underwater Sensor Network is a need of the future. Underwater data transmission itself is a big challenge due to various limitations of underwater communication mediums like lower bandwidth, multipath effect, path loss, propagation delay, noise, Doppler spread, and so on. These challenges make the underwater networks one of the most vulnerable networks for many different security attacks like sinkhole, spoofing, wormhole, misdirection, etc. It causes packets unable to be delivered to the destination, and even worse forward them to malicious nodes. A compromised node, which may be a router, intercepts packets going through it, and selectively drops them or can perform some malicious activity. This paper presents a solution to Mitigate unsecured data forwarding related attacks of an underwater sensor network, our solution uses a pre-shared key to secure communication and hashing algorithm to maintain the integrity of stored locations at head node and demonstration of attack and its mitigation done on Unetstack software.
2022-04-26
Li, Jun, Zhang, Wei, Chen, Xuehong, Yang, Shuaifeng, Zhang, Xueying, Zhou, Hao, Li, Yun.  2021.  A Novel Incentive Mechanism Based on Repeated Game in Fog Computing. 2021 3rd International Conference on Advances in Computer Technology, Information Science and Communication (CTISC). :112–119.

Fog computing is a new computing paradigm that utilizes numerous mutually cooperating terminal devices or network edge devices to provide computing, storage, and communication services. Fog computing extends cloud computing services to the edge of the network, making up for the deficiencies of cloud computing in terms of location awareness, mobility support and latency. However, fog nodes are not active enough to perform tasks, and fog nodes recruited by cloud service providers cannot provide stable and continuous resources, which limits the development of fog computing. In the process of cloud service providers using the resources in the fog nodes to provide services to users, the cloud service providers and fog nodes are selfish and committed to maximizing their own payoffs. This situation makes it easy for the fog node to work negatively during the execution of the task. Limited by the low quality of resource provided by fog nodes, the payoff of cloud service providers has been severely affected. In response to this problem, an appropriate incentive mechanism needs to be established in the fog computing environment to solve the core problems faced by both cloud service providers and fog nodes in maximizing their respective utility, in order to achieve the incentive effect. Therefore, this paper proposes an incentive model based on repeated game, and designs a trigger strategy with credible threats, and obtains the conditions for incentive consistency. Under this condition, the fog node will be forced by the deterrence of the trigger strategy to voluntarily choose the strategy of actively executing the task, so as to avoid the loss of subsequent rewards when it is found to perform the task passively. Then, using evolutionary game theory to analyze the stability of the trigger strategy, it proves the dynamic validity of the incentive consistency condition.

2022-04-22
Liu, Bo, Kong, Qingshan, Huang, Weiqing, Guo, Shaoying.  2021.  Detection of Events in OTDR Data via Variational Mode Decomposition and Hilbert Transform. 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). :38—43.
Optical time domain reflectometry (OTDR) plays an important role in optical fiber communications. To improve the performance of OTDR, we propose a method based on the Variational Mode Decomposition (VMD) and Hilbert transform (HT) for fiber events detection. Firstly, the variational mode decomposition is applied to decompose OTDR data into some intrinsic mode functions (imfs). To determine the decomposition mode number in VMD, an adaptive estimation method is introduced. Secondly, the Hilbert transform is utilized to obtain the instantaneous amplitude of the imf for events localization. Finally, the Dynamic Time Warping (DTW) is used for identifying the type of event. Experimental results show that the proposed method can locate events accurately. Compared with the Short-Time Fourier Transform (STFT) method, the VMD-HT method presents a higher accuracy in events localization, which indicates that the method is effective and applicable.
2022-03-01
Vegni, Anna Maria, Hammouda, Marwan, Loscr\'ı, Valeria.  2021.  A VLC-Based Footprinting Localization Algorithm for Internet of Underwater Things in 6G Networks. 2021 17th International Symposium on Wireless Communication Systems (ISWCS). :1–6.
In the upcoming advent of 6G networks, underwater communications are expected to play a relevant role in the context of overlapping hybrid wireless networks, following a multilayer architecture i.e., aerial-ground-underwater. The concept of Internet of Underwater Things defines different communication and networking technologies, as well as positioning and tracking services, suitable for harsh underwater scenarios. In this paper, we present a footprinting localization algorithm based on optical wireless signals in the visible range. The proposed technique is based on a hybrid Radio Frequency (RF) and Visible Light Communication (VLC) network architecture, where a central RF sensor node holds an environment channel gain map i.e., database, that is exploited for localization estimation computation. A recursive localization algorithm allows to estimate user positions with centimeter-based accuracy, in case of different turbidity scenarios.
2021-11-08
You, Guoping, Zhu, Yingli.  2020.  Structure and Key Technologies of Wireless Sensor Network. 2020 Cross Strait Radio Science Wireless Technology Conference (CSRSWTC). :1–2.
With the improvement of scientific and technological level in China, wireless sensor network technology has been widely promoted and applied, which has now been popularized to various fields of society from military defense. Wireless sensor network combines sensor technology, communication technology and computer technology together, and has the ability of information collection, transmission and processing. In this paper, the structure of wireless sensor network and node localization technology are briefly introduced, and the key technologies of wireless sensor network development are summarized from the four aspects of energy efficiency, node localization, data fusion and network security. As a detection system of perceiving the physical world, WSN is also facing challenges while developing rapidly.
2020-01-20
Faticanti, Francescomaria, De Pellegrini, Francesco, Siracusa, Domenico, Santoro, Daniele, Cretti, Silvio.  2019.  Cutting Throughput with the Edge: App-Aware Placement in Fog Computing. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :196–203.

Fog computing extends cloud computing technology to the edge of the infrastructure to support dynamic computation for IoT applications. Reduced latency and location awareness in objects' data access is attained by displacing workloads from the central cloud to edge devices. Doing so, it reduces raw data transfers from target objects to the central cloud, thus overcoming communication bottlenecks. This is a key step towards the pervasive uptake of next generation IoT-based services. In this work we study efficient orchestration of applications in fog computing, where a fog application is the cascade of a cloud module and a fog module. The problem results into a mixed integer non linear optimisation. It involves multiple constraints due to computation and communication demands of fog applications, available infrastructure resources and it accounts also the location of target IoT objects. We show that it is possible to reduce the complexity of the original problem with a related placement formulation, which is further solved using a greedy algorithm. This algorithm is the core placement logic of FogAtlas, a fog computing platform based on existing virtualization technologies. Extensive numerical results validate the model and the scalability of the proposed algorithm, showing performance close to the optimal solution with respect to the number of served applications.