Biblio
Improved safety, high mobility and environmental concerns in transportation systems across the world and the corresponding developments in information and communication technologies continue to drive attention towards Intelligent Transportation Systems (ITS). This is evident in advanced driver-assistance systems such as lane departure warning, adaptive cruise control and collision avoidance. However, in connected and autonomous vehicles, the efficient functionality of these applications depends largely on the ability of a vehicle to accurately predict it operating parameters such as location and speed. The ability to predict the immediate future/next location (or speed) of a vehicle or its ability to predict neighbors help in guaranteeing integrity, availability and accountability, thus boosting safety and resiliency of the Vehicular Network for Mobile Cyber Physical Systems (VCPS). In this paper, we proposed a secure movement-prediction for connected vehicles by using Kalman filter. Specifically, Kalman filter predicts the locations and speeds of individual vehicles with reference to already observed and known information such posted legal speed limit, geographic/road location, direction etc. The aim is to achieve resilience through the predicted and exchanged information between connected moving vehicles in an adaptive manner. By being able to predict their future locations, the following vehicle is able to adjust its position more accurately to avoid collision and to ensure optimal information exchange among vehicles.
Vehicular networks are susceptible to variety of attacks such as denial of service (DoS) attack, sybil attack and false alert generation attack. Different cryptographic methods have been proposed to protect vehicular networks from these kind of attacks. However, cryptographic methods have been found to be less effective to protect from insider attacks which are generated within the vehicular network system. Misbehavior detection system is found to be more effective to detect and prevent insider attacks. In this paper, we propose a machine learning based misbehavior detection system which is trained using datasets generated through extensive simulation based on realistic vehicular network environment. The simulation results demonstrate that our proposed scheme outperforms previous methods in terms of accurately identifying various misbehavior.
Vehicular Ad-hoc Networks (VANETs) are a subset of Mobile Ad-hoc Networks (MANETs). They are deployed to introduce the ability of inter-communication among vehicles in order to guarantee safety and provide services for people while driving. VANETs are exposed to many types of attacks like denial of service, spoofing, ID disclosure and Sybil attacks. In this paper, a novel lightweight approach for preventing Sybil attack in VANETs is proposed. The presented protocol scheme uses symmetric key encryption and authentication between Road Side Units (RSUs) and vehicles on the road so that no malicious vehicle could gain more than one identity inside the network. This protocol does not need managers for Road Side Units (RSUs) or Certification Authority (CA) and uses minimum amount of messages exchanged with RSU making the scheme efficient and effective.
Vehicular ad hoc network is based on MANET all the vehicle to vehicle and vehicle roadside are connected to the wireless sensor network. In this paper mainly discuss on the security in the VANET in the lightweight cloud environment. Moving vehicle on the roadside connected through the sensor nodes and to provide communication between the vehicles and directly connected to the centralized environment. We propose a new approach to share the information in the VANET networks in secure manner through cloud.
In recent years the use of wireless ad hoc networks has seen an increase of applications. A big part of the research has focused on Mobile Ad Hoc Networks (MAnETs), due to its implementations in vehicular networks, battlefield communications, among others. These peer-to-peer networks usually test novel communications protocols, but leave out the network security part. A wide range of attacks can happen as in wired networks, some of them being more damaging in MANETs. Because of the characteristics of these networks, conventional methods for detection of attack traffic are ineffective. Intrusion Detection Systems (IDSs) are constructed on various detection techniques, but one of the most important is anomaly detection. IDSs based only in past attacks signatures are less effective, even more if these IDSs are centralized. Our work focuses on adding a novel Machine Learning technique to the detection engine, which recognizes attack traffic in an online way (not to store and analyze after), re-writing IDS rules on the fly. Experiments were done using the Dockemu emulation tool with Linux Containers, IPv6 and OLSR as routing protocol, leading to promising results.
Vehicular networks have been drawing special atten- tion in recent years, due to its importance in enhancing driving experience and improving road safety in future smart city. In past few years, several security services, based on cryptography, PKI and pseudonymous, have been standardized by IEEE and ETSI. However, vehicular networks are still vulnerable to various attacks, especially Sybil attack. In this paper, a Support Vector Machine (SVM) based Sybil attack detection method is proposed. We present three SVM kernel functions based classifiers to distinguish the malicious nodes from benign ones via evaluating the variance in their Driving Pattern Matrices (DPMs). The effectiveness of our proposed solution is evaluated through extensive simulations based on SUMO simulator and MATLAB. The results show that the proposed detection method can achieve a high detection rate with low error rate even under a dynamic traffic environment.
Mobile ad-hoc networks (MANETs) are decentralized and self-organizing communication systems. They have become pervasive in the current technological framework. MANETs have become a vital solution to the services that need flexible establishments, dynamic and wireless connections such as military operations, healthcare systems, vehicular networks, mobile conferences, etc. Hence it is more important to estimate the trustworthiness of moving devices. In this research, we have proposed a model to improve a trusted routing in mobile ad-hoc networks by identifying malicious nodes. The proposed system uses Reinforcement Learning (RL) agent that learns to detect malicious nodes. The work focuses on a MANET with Ad-hoc On-demand Distance Vector (AODV) Protocol. Most of the systems were developed with the assumption of a small network with limited number of neighbours. But with the introduction of reinforcement learning concepts this work tries to minimize those limitations. The main objective of the research is to introduce a new model which has the capability to detect malicious nodes that decrease the performance of a MANET significantly. The malicious behaviour is simulated with black holes that move randomly across the network. After identifying the technology stack and concepts of RL, system design was designed and the implementation was carried out. Then tests were performed and defects and further improvements were identified. The research deliverables concluded that the proposed model arranges for highly accurate and reliable trust improvement by detecting malicious nodes in a dynamic MANET environment.
Public Key Regime (PKR) was proposed as an alternative to certificate based PKI in securing Vehicular Networks (VNs). It eliminates the need for vehicles to append their certificate for verification because the Road Side Units (RSUs) serve as Delegated Trusted Authorities (DTAs) to issue up-to-date public keys to vehicles for communications. If a vehicle's private/public key needs to be revoked, the root TA performs real time updates and disseminates the changes to these RSUs in the network. Therefore, PKR does not need to maintain a huge Certificate Revocation List (CRL), avoids complex certificate verification process and minimizes the high latency. However, the PKR scheme is vulnerable to Denial of Service (DoS) and collusion attacks. In this paper, we study these attacks and propose a pre-authentication mechanism to secure the PKR scheme. Our new scheme is called the Secure Public Key Regime (SPKR). It is based on the Schnorr signature scheme that requires vehicles to expend some amount of CPU resources before RSUs issue the requested public keys to them. This helps to alleviate the risk of DoS attacks. Furthermore, our scheme is secure against collusion attacks. Through numerical analysis, we show that SPKR has a lower authentication delay compared with the Elliptic Curve Digital Signature (ECDSA) scheme and other ECDSA based counterparts.
Infrastructure-based Vehicular Networks can be applied in different social contexts, such as health care, transportation and entertainment. They can easily take advantage of the benefices provided by wireless mesh networks (WMNs) to mobility, since WMNs essentially support technological convergence and resilience, required for the effective operation of services and applications. However, infrastructure-based vehicular networks are prone to attacks such as ARP packets flooding that compromise mobility management and users' network access. Hence, this work proposes MIRF, a secure mobility scheme based on reputation and filtering to mitigate flooding attacks on mobility management. The efficiency of the MIRF scheme has been evaluated by simulations considering urban scenarios with and without attacks. Analyses show that it significantly improves the packet delivery ratio in scenarios with attacks, mitigating their intentional negative effects, as the reduction of malicious ARP requests. Furthermore, improvements have been observed in the number of handoffs on scenarios under attacks, being faster than scenarios without the scheme.