Visible to the public Biblio

Found 102 results

Filters: Keyword is computational complexity  [Clear All Filters]
2020-01-27
Fuchs, Caro, Spolaor, Simone, Nobile, Marco S., Kaymak, Uzay.  2019.  A Swarm Intelligence Approach to Avoid Local Optima in Fuzzy C-Means Clustering. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
Clustering analysis is an important computational task that has applications in many domains. One of the most popular algorithms to solve the clustering problem is fuzzy c-means, which exploits notions from fuzzy logic to provide a smooth partitioning of the data into classes, allowing the possibility of multiple membership for each data sample. The fuzzy c-means algorithm is based on the optimization of a partitioning function, which minimizes inter-cluster similarity. This optimization problem is known to be NP-hard and it is generally tackled using a hill climbing method, a local optimizer that provides acceptable but sub-optimal solutions, since it is sensitive to initialization and tends to get stuck in local optima. In this work we propose an alternative approach based on the swarm intelligence global optimization method Fuzzy Self-Tuning Particle Swarm Optimization (FST-PSO). We solve the fuzzy clustering task by optimizing fuzzy c-means' partitioning function using FST-PSO. We show that this population-based metaheuristics is more effective than hill climbing, providing high quality solutions with the cost of an additional computational complexity. It is noteworthy that, since this particle swarm optimization algorithm is self-tuning, the user does not have to specify additional hyperparameters for the optimization process.
2020-01-20
Wang, Qihua, Lv, Gaoyan, Sun, Xiuling.  2019.  Distributed Access Control with Outsourced Computation in Fog Computing. 2019 Chinese Control And Decision Conference (CCDC). :2446–2450.

With the rapid development of Internet of things (IOT) and big data, the number of network terminal devices and big data transmission are increasing rapidly. Traditional cloud computing faces a great challenge in dealing with this massive amount of data. Fog computing which extends the computing at the edge of the network can provide computation and data storage. Attribute based-encryption can effectively achieve the fine-grained access control. However, the computational complexity of the encryption and decryption is growing linearly with the increase of the number of attributes. In order to reduce the computational cost and guarantee the confidentiality of data, distributed access control with outsourced computation in fog computing is proposed in this paper. In our proposed scheme, fog device takes most of computational cost in encryption and decryption phase. The computational cost of the receiver and sender can be reduced. Moreover, the private key of the user is generated by multi-authority which can enhance the security of data. The analysis of security and performance shows that our proposed scheme proves to be effective and secure.

2019-12-30
Zhang, Jiangfan.  2019.  Quickest Detection of Time-Varying False Data Injection Attacks in Dynamic Smart Grids. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2432-2436.

Quickest detection of false data injection attacks (FDIAs) in dynamic smart grids is considered in this paper. The unknown time-varying state variables of the smart grid and the FDIAs impose a significant challenge for designing a computationally efficient detector. To address this challenge, we propose new Cumulative-Sum-type algorithms with computational complex scaling linearly with the number of meters. Moreover, for any constraint on the expected false alarm period, a lower bound on the threshold employed in the proposed algorithm is provided. For any given threshold employed in the proposed algorithm, an upper bound on the worstcase expected detection delay is also derived. The proposed algorithm is numerically investigated in the context of an IEEE standard power system under FDIAs, and is shown to outperform some representative algorithm in the test case.

Yakymenko, I. Z., Kasianchuk, M. M., Ivasiev, S. V., Melnyk, A. M., Nykolaichuk, Ya. M..  2018.  Realization of RSA Cryptographic Algorithm Based on Vector-Module Method of Modular Exponention. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). :550-554.

The improvement of the implementation of the RSA cryptographic algorithm for encrypting / decoding information flows based on the use of the vector-modular method of modular exponential is presented in this paper. This makes it possible to replace the complex operation of modular multiplication with the addition operation, which increases the speed of the RSA cryptosystem. The scheme of algorithms of modular multiplication and modular exponentiation is presented. The analytical and graphical comparison of the time complexities of the proposed and known approaches shows that the use of the vector-modular method reduces the temporal complexity of the modular exponential compared to the classical one.

2019-12-05
Guang, Xuan, Yeung, Raymond w..  2019.  Local-Encoding-Preserving Secure Network Coding for Fixed Dimension. 2019 IEEE International Symposium on Information Theory (ISIT). :201-205.

In the paradigm of network coding, information-theoretic security is considered in the presence of wiretappers, who can access one arbitrary edge subset up to a certain size, referred to as the security level. Secure network coding is applied to prevent the leakage of the source information to the wiretappers. In this paper, we consider the problem of secure network coding for flexible pairs of information rate and security level with any fixed dimension (equal to the sum of rate and security level). We present a novel approach for designing a secure linear network code (SLNC) such that the same SLNC can be applied for all the rate and security-level pairs with the fixed dimension. We further develop a polynomial-time algorithm for efficient implementation and prove that there is no penalty on the required field size for the existence of SLNCs in terms of the best known lower bound by Guang and Yeung. Finally, by applying our approach as a crucial building block, we can construct a family of SLNCs that not only can be applied to all possible pairs of rate and security level but also share a common local encoding kernel at each intermediate node in the network.

2019-11-25
Pich, Reatrey, Chivapreecha, Sorawat, Prabnasak, Jaruwit.  2018.  A single, triple chaotic cryptography using chaos in digital filter and its own comparison to DES and triple DES. 2018 International Workshop on Advanced Image Technology (IWAIT). :1–4.
The Data Encryption Standard (DES) of the multimedia cryptography possesses the weak point of key conducting that is why it reaches to the triple form of DES. However, the triple DES obtains the better characteristic to secure the protection of data to against the attacks, it still contains an extremely inappropriate performance (speed) and efficiency in doing so. This paper provides the effective performance and the results of a single and triple chaotic cryptography using chaos in digital filter, compare to DES and triple DES. This comparison has been made pair-to-pair of single structure respectively to the triple form. Finally the implementation aspects of a single chaotic cryptography using chaos in digital filter can stand efficiently as better performance speed with the small complexity algorithm, points out the resemblances to DES and triple DES with the similar security confirmation results without reaching to the triple form of the structure. Simulation has been conducted using Matlab simulation with the input of grayscale image.
2019-10-08
Arslan, B., Ulker, M., Akleylek, S., Sagiroglu, S..  2018.  A Study on the Use of Quantum Computers, Risk Assessment and Security Problems. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–6.

In the computer based solutions of the problems in today's world; if the problem has a high complexity value, different requirements can be addressed such as necessity of simultaneous operation of many computers, the long processing times for the operation of algorithms, and computers with hardware features that can provide high performance. For this reason, it is inevitable to use a computer based on quantum physics in the near future in order to make today's cryptosystems unsafe, search the servers and other information storage centers on internet very quickly, solve optimization problems in the NP-hard category with a very wide solution space and analyze information on large-scale data processing and to process high-resolution image for artificial intelligence applications. In this study, an examination of quantum approaches and quantum computers, which will be widely used in the near future, was carried out and the areas in which such innovation can be used was evaluated. Malicious or non-malicious use of quantum computers with this capacity, the advantages and disadvantages of the high performance which it provides were examined under the head of security, the effect of this recent technology on the existing security systems was investigated.

2019-05-20
[Anonymous].  2018.  Breaking the Circuit-Size Barrier in Secret Sharing. STOC 2018.

{We study secret sharing schemes for general (non-threshold) access structures. A general secret sharing scheme for n parties is associated to a monotone function F:\0,1\n$\rightarrowłbrace$0,1\}. In such a scheme, a dealer distributes shares of a secret s among n parties. Any subset of parties T {$\subseteq$} [n] should be able to put together their shares and reconstruct the secret s if F(T)=1, and should have no information about s if F(T)=0. One of the major long-standing questions in information-theoretic cryptography is to minimize the (total) size of the shares in a secret-sharing scheme for arbitrary monotone functions F. There is a large gap between lower and upper bounds for secret sharing. The best known scheme for general F has shares of size 2n-o(n), but the best lower bound is {$Ømega$}(n2/logn). Indeed, the exponential share size is a direct result of the fact that in all known secret-sharing schemes, the share size grows with the size of a circuit (or formula, or monotone span program) for F. Indeed, several researchers have suggested the existence of a representation size barrier which implies that the right answer is closer to the upper bound, namely, 2n-o(n). In this work, we overcome this barrier by constructing a secret sharing scheme for any access structure with shares of size 20.994n and a linear secret sharing scheme for any access structure with shares of size 20.999n. As a contribution of independent interest, we also construct a secret sharing scheme with shares of size 2Õ({$\surd$}n) for 2n n/2 monotone access structures, out of a total of 2n n/2{$\cdot$} (1+O(logn/n)) of them. Our construction builds on recent works that construct better protocols for the conditional disclosure of secrets (CDS) problem.

2019-04-05
Nan, Z., Zhai, L., Zhai, L., Liu, H..  2018.  Botnet Homology Method Based on Symbolic Approximation Algorithm of Communication Characteristic Curve. 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). :1-6.

The IRC botnet is the earliest and most significant botnet group that has a significant impact. Its characteristic is to control multiple zombies hosts through the IRC protocol and constructing command control channels. Relevant research analyzes the large amount of network traffic generated by command interaction between the botnet client and the C&C server. Packet capture traffic monitoring on the network is currently a more effective detection method, but this information does not reflect the essential characteristics of the IRC botnet. The increase in the amount of erroneous judgments has often occurred. To identify whether the botnet control server is a homogenous botnet, dynamic network communication characteristic curves are extracted. For unequal time series, dynamic time warping distance clustering is used to identify the homologous botnets by category, and in order to improve detection. Speed, experiments will use SAX to reduce the dimension of the extracted curve, reducing the time cost without reducing the accuracy.

2019-03-25
Hasan, K., Shetty, S., Hassanzadeh, A., Salem, M. B., Chen, J..  2018.  Self-Healing Cyber Resilient Framework for Software Defined Networking-Enabled Energy Delivery System. 2018 IEEE Conference on Control Technology and Applications (CCTA). :1692–1697.
Software defined networking (SDN) is a networking paradigm to provide automated network management at run time through network orchestration and virtualization. SDN can also enhance system resilience through recovery from failures and maintaining critical operations during cyber attacks. SDN's self-healing mechanisms can be leveraged to realized autonomous attack containment, which dynamically modifies access control rules based on configurable trust levels. In this paper, we present an approach to aid in selection of security countermeasures dynamically in an SDN enabled Energy Delivery System (EDS) and achieving tradeoff between providing security and QoS. We present the modeling of security cost based on end-to-end packet delay and throughput. We propose a non-dominated sorting based multi-objective optimization framework which can be implemented within an SDN controller to address the joint problem of optimizing between security and QoS parameters by alleviating time complexity at O(M N2), where M is the number of objective functions and N is the number of population for each generation respectively. We present simulation results which illustrate how data availability and data integrity can be achieved while maintaining QoS constraints.
2019-02-14
Zhang, S., Wolthusen, S. D..  2018.  Efficient Control Recovery for Resilient Control Systems. 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). :1-6.

Resilient control systems should efficiently restore control into physical systems not only after the sabotage of themselves, but also after breaking physical systems. To enhance resilience of control systems, given an originally minimal-input controlled linear-time invariant(LTI) physical system, we address the problem of efficient control recovery into it after removing a known system vertex by finding the minimum number of inputs. According to the minimum input theorem, given a digraph embedded into LTI model and involving a precomputed maximum matching, this problem is modeled into recovering controllability of it after removing a known network vertex. Then, we recover controllability of the residual network by efficiently finding a maximum matching rather than recomputation. As a result, except for precomputing a maximum matching and the following removed vertex, the worst-case execution time of control recovery into the residual LTI physical system is linear.

2019-02-08
Sisiaridis, D., Markowitch, O..  2018.  Reducing Data Complexity in Feature Extraction and Feature Selection for Big Data Security Analytics. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :43-48.

Feature extraction and feature selection are the first tasks in pre-processing of input logs in order to detect cybersecurity threats and attacks by utilizing data mining techniques in the field of Artificial Intelligence. When it comes to the analysis of heterogeneous data derived from different sources, these tasks are found to be time-consuming and difficult to be managed efficiently. In this paper, we present an approach for handling feature extraction and feature selection utilizing machine learning algorithms for security analytics of heterogeneous data derived from different network sensors. The approach is implemented in Apache Spark, using its python API, named pyspark.

2019-01-21
Wu, M., Li, Y..  2018.  Adversarial mRMR against Evasion Attacks. 2018 International Joint Conference on Neural Networks (IJCNN). :1–6.

Machine learning (ML) algorithms provide a good solution for many security sensitive applications, they themselves, however, face the threats of adversary attacks. As a key problem in machine learning, how to design robust feature selection algorithms against these attacks becomes a hot issue. The current researches on defending evasion attacks mainly focus on wrapped adversarial feature selection algorithm, i.e., WAFS, which is dependent on the classification algorithms, and time cost is very high for large-scale data. Since mRMR (minimum Redundancy and Maximum Relevance) algorithm is one of the most popular filter algorithms for feature selection without considering any classifier during feature selection process. In this paper, we propose a novel adversary-aware feature selection algorithm under filter model based on mRMR, named FAFS. The algorithm, on the one hand, takes the correlation between a single feature and a label, and the redundancy between features into account; on the other hand, when selecting features, it not only considers the generalization ability in the absence of attack, but also the robustness under attack. The performance of four algorithms, i.e., mRMR, TWFS (Traditional Wrapped Feature Selection algorithm), WAFS, and FAFS is evaluated on spam filtering and PDF malicious detection in the Perfect Knowledge attack scenarios. The experiment results show that FAFS has a better performance under evasion attacks with less time complexity, and comparable classification accuracy.

Fahrbach, M., Miller, G. L., Peng, R., Sawlani, S., Wang, J., Xu, S. C..  2018.  Graph Sketching against Adaptive Adversaries Applied to the Minimum Degree Algorithm. 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). :101–112.

Motivated by the study of matrix elimination orderings in combinatorial scientific computing, we utilize graph sketching and local sampling to give a data structure that provides access to approximate fill degrees of a matrix undergoing elimination in polylogarithmic time per elimination and query. We then study the problem of using this data structure in the minimum degree algorithm, which is a widely-used heuristic for producing elimination orderings for sparse matrices by repeatedly eliminating the vertex with (approximate) minimum fill degree. This leads to a nearly-linear time algorithm for generating approximate greedy minimum degree orderings. Despite extensive studies of algorithms for elimination orderings in combinatorial scientific computing, our result is the first rigorous incorporation of randomized tools in this setting, as well as the first nearly-linear time algorithm for producing elimination orderings with provable approximation guarantees. While our sketching data structure readily works in the oblivious adversary model, by repeatedly querying and greedily updating itself, it enters the adaptive adversarial model where the underlying sketches become prone to failure due to dependency issues with their internal randomness. We show how to use an additional sampling procedure to circumvent this problem and to create an independent access sequence. Our technique for decorrelating interleaved queries and updates to this randomized data structure may be of independent interest.

Wang, X., Hou, Y., Huang, X., Li, D., Tao, X., Xu, J..  2018.  Security Analysis of Key Extraction from Physical Measurements with Multiple Adversaries. 2018 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
In this paper, security of secret key extraction scheme is evaluated for private communication between legitimate wireless devices. Multiple adversaries that distribute around these legitimate wireless devices eavesdrop on the data transmitted between them, and deduce the secret key. Conditional min-entropy given the view of those adversaries is utilized as security evaluation metric in this paper. Besides, the wiretap channel model and hidden Markov model (HMM) are regarded as the channel model and a dynamic programming approach is used to approximate conditional min- entropy. Two algorithms are proposed to mathematically calculate the conditional min- entropy by combining the Viterbi algorithm with the Forward algorithm. Optimal method with multiple adversaries (OME) algorithm is proposed firstly, which has superior performance but exponential computation complexity. To reduce this complexity, suboptimal method with multiple adversaries (SOME) algorithm is proposed, using performance degradation for the computation complexity reduction. In addition to the theoretical analysis, simulation results further show that the OME algorithm indeed has superior performance as well as the SOME algorithm has more efficient computation.
Meng, Leilei, Su, Xin, Zhang, Xuewu, Choi, Chang, Choi, Dongmin.  2018.  Signal Reception for Successive Interference Cancellation in NOMA Downlink. Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems. :75–79.

Successive interference cancellation (SIC) receiver is adopted by power domain non-orthogonal multiple access (NOMA) at the receiver side as the baseline receiver scheme taking the forthcoming expected mobile device evolution into account. Development technologies and advanced techniques are boldly being considered in order to achieve power saving in many networks, to reach sustainability and reliability in communication due to envisioned huge amount of data delivery. In this paper, we propose a novel scheme of NOMA-SIC for the sake of balancing the trade-off between system performance and complexity. In the proposed scheme, each SIC level is comprised by a matching filter (MF), a MF detector and a regenerator. In simulations, the proposed scheme demonstrates the best performance on power saving, of which energy efficiency increases with an increase in the number of NOMA device pairs.

2018-12-10
Versluis, L., Neacsu, M., Iosup, A..  2018.  A Trace-Based Performance Study of Autoscaling Workloads of Workflows in Datacenters. 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :223–232.

To improve customer experience, datacenter operators offer support for simplifying application and resource management. For example, running workloads of workflows on behalf of customers is desirable, but requires increasingly more sophisticated autoscaling policies, that is, policies that dynamically provision resources for the customer. Although selecting and tuning autoscaling policies is a challenging task for datacenter operators, so far relatively few studies investigate the performance of autoscaling for workloads of workflows. Complementing previous knowledge, in this work we propose the first comprehensive performance study in the field. Using trace-based simulation, we compare state-of-the-art autoscaling policies across multiple application domains, workload arrival patterns (e.g., burstiness), and system utilization levels. We further investigate the interplay between autoscaling and regular allocation policies, and the complexity cost of autoscaling. Our quantitative study focuses not only on traditional performance metrics and on state-of-the-art elasticity metrics, but also on time-and memory-related autoscaling-complexity metrics. Our main results give strong and quantitative evidence about previously unreported operational behavior, for example, that autoscaling policies perform differently across application domains and allocation and provisioning policies should be co-designed.

2018-09-28
Qu, X., Mu, L..  2017.  An augmented cubature Kalman filter for nonlinear dynamical systems with random parameters. 2017 36th Chinese Control Conference (CCC). :1114–1118.

In this paper, we investigate the Bayesian filtering problem for discrete nonlinear dynamical systems which contain random parameters. An augmented cubature Kalman filter (CKF) is developed to deal with the random parameters, where the state vector is enlarged by incorporating the random parameters. The corresponding number of cubature points is increased, so the augmented CKF method requires more computational complexity. However, the estimation accuracy is improved in comparison with that of the classical CKF method which uses the nominal values of the random parameters. An application to the mobile source localization with time difference of arrival (TDOA) measurements and random sensor positions is provided where the simulation results illustrate that the augmented CKF method leads to a superior performance in comparison with the classical CKF method.

2018-06-07
Sim, H., Nguyen, D., Lee, J., Choi, K..  2017.  Scalable stochastic-computing accelerator for convolutional neural networks. 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC). :696–701.

Stochastic Computing (SC) is an alternative design paradigm particularly useful for applications where cost is critical. SC has been applied to neural networks, as neural networks are known for their high computational complexity. However previous work in this area has critical limitations such as the fully-parallel architecture assumption, which prevent them from being applicable to recent ones such as convolutional neural networks, or ConvNets. This paper presents the first SC architecture for ConvNets, shows its feasibility, with detailed analyses of implementation overheads. Our SC-ConvNet is a hybrid between SC and conventional binary design, which is a marked difference from earlier SC-based neural networks. Though this might seem like a compromise, it is a novel feature driven by the need to support modern ConvNets at scale, which commonly have many, large layers. Our proposed architecture also features hybrid layer composition, which helps achieve very high recognition accuracy. Our detailed evaluation results involving functional simulation and RTL synthesis suggest that SC-ConvNets are indeed competitive with conventional binary designs, even without considering inherent error resilience of SC.

2018-05-30
Liu, C., Feng, Y., Fan, M., Wang, G..  2008.  PKI Mesh Trust Model Based on Trusted Computing. 2008 The 9th International Conference for Young Computer Scientists. :1401–1405.

Different organizations or countries maybe adopt different PKI trust model in real applications. On a large scale, all certification authorities (CA) and end entities construct a huge mesh network. PKI trust model exhibits unstructured mesh network as a whole. However, mesh trust model worsens computational complexity in certification path processing when the number of PKI domains increases. This paper proposes an enhanced mesh trust model for PKI. Keys generation and signature are fulfilled in Trusted Platform Module (TPM) for higher security level. An algorithm is suggested to improve the performance of certification path processing in this model. This trust model is less complex but more efficient and robust than the existing PKI trust models.

2018-05-24
Chadha, R., Sistla, A. P., Viswanathan, M..  2017.  Verification of Randomized Security Protocols. 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). :1–12.

We consider the problem of verifying the security of finitely many sessions of a protocol that tosses coins in addition to standard cryptographic primitives against a Dolev-Yao adversary. Two properties are investigated here - secrecy, which asks if no adversary interacting with a protocol P can determine a secret sec with probability textgreater 1 - p; and indistinguishability, which asks if the probability observing any sequence 0$øverline$ in P1 is the same as that of observing 0$øverline$ in P2, under the same adversary. Both secrecy and indistinguishability are known to be coNP-complete for non-randomized protocols. In contrast, we show that, for randomized protocols, secrecy and indistinguishability are both decidable in coNEXPTIME. We also prove a matching lower bound for the secrecy problem by reducing the non-satisfiability problem of monadic first order logic without equality.

2018-05-16
Berge, Pierre, Crampton, Jason, Gutin, Gregory, Watrigant, Rémi.  2017.  The Authorization Policy Existence Problem. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. :163–165.

Constraints such as separation-of-duty are widely used to specify requirements that supplement basic authorization policies. However, the existence of constraints (and authorization policies) may mean that a user is unable to fulfill her/his organizational duties because access to resources is denied. In short, there is a tension between the need to protect resources (using policies and constraints) and the availability of resources. Recent work on workflow satisfiability and resiliency in access control asks whether this tension compromises the ability of an organization to achieve its objectives. In this paper, we develop a new method of specifying constraints which subsumes much related work and allows a wider range of constraints to be specified. The use of such constraints leads naturally to a range of questions related to "policy existence", where a positive answer means that an organization's objectives can be realized. We provide an overview of our results establishing that some policy existence questions, notably for those instances that are restricted to user-independent constraints, are fixed-parameter tractable.

2018-05-02
Gu, P., Khatoun, R., Begriche, Y., Serhrouchni, A..  2017.  k-Nearest Neighbours classification based Sybil attack detection in Vehicular networks. 2017 Third International Conference on Mobile and Secure Services (MobiSecServ). :1–6.

In Vehicular networks, privacy, especially the vehicles' location privacy is highly concerned. Several pseudonymous based privacy protection mechanisms have been established and standardized in the past few years by IEEE and ETSI. However, vehicular networks are still vulnerable to Sybil attack. In this paper, a Sybil attack detection method based on k-Nearest Neighbours (kNN) classification algorithm is proposed. In this method, vehicles are classified based on the similarity in their driving patterns. Furthermore, the kNN methods' high runtime complexity issue is also optimized. The simulation results show that our detection method can reach a high detection rate while keeping error rate low.

Rjoub, G., Bentahar, J..  2017.  Cloud Task Scheduling Based on Swarm Intelligence and Machine Learning. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :272–279.

Cloud computing is the expansion of parallel computing, distributed computing. The technology of cloud computing becomes more and more widely used, and one of the fundamental issues in this cloud environment is related to task scheduling. However, scheduling in Cloud environments represents a difficult issue since it is basically NP-complete. Thus, many variants based on approximation techniques, especially those inspired by Swarm Intelligence (SI) have been proposed. This paper proposes a machine learning algorithm to guide the cloud choose the scheduling technique by using multi criteria decision to optimize the performance. The main contribution of our work is to minimize the makespan of a given task set. The new strategy is simulated using the CloudSim toolkit package where the impact of the algorithm is checked with different numbers of VMs varying from 2 to 50, and different task sizes between 30 bytes and 2700 bytes. Experiment results show that the proposed algorithm minimizes the execution time and the makespan between 7% and 75%, and improves the performance of the load balancing scheduling.

Menezes, B. A. M., Wrede, F., Kuchen, H., Neto, F. B. de Lima.  2017.  Parameter selection for swarm intelligence algorithms \#x2014; Case study on parallel implementation of FSS. 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI). :1–6.

Swarm Intelligence (SI) algorithms, such as Fish School Search (FSS), are well known as useful tools that can be used to achieve a good solution in a reasonable amount of time for complex optimization problems. And when problems increase in size and complexity, some increase in population size or number of iterations might be needed in order to achieve a good solution. In extreme cases, the execution time can be huge and other approaches, such as parallel implementations, might help to reduce it. This paper investigates the relation and trade off involving these three aspects in SI algorithms, namely population size, number of iterations, and problem complexity. The results with a parallel implementations of FSS show that increasing the population size is beneficial for finding good solutions. However, we observed an asymptotic behavior of the results, i.e. increasing the population over a certain threshold only leads to slight improvements.