Biblio
Filters: Keyword is Photovoltaic systems [Clear All Filters]
An Optimal Planning Model for Cyber-physical Active Distribution System Considering the Reliability Requirements. 2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES). :1476—1480.
.
2022. Since the cyber and physical layers in the distribution system are deeply integrated, the traditional distribution system has gradually developed into the cyber-physical distribution system (CPDS), and the failures of the cyber layer will affect the reliable and safe operation of the whole distribution system. Therefore, this paper proposes an CPDS planning method considering the reliability of the cyber-physical system. First, the reliability evaluation model of CPDS is proposed. Specifically, the functional reliability model of the cyber layer is introduced, based on which the physical equipment reliability model is further investigated. Second, an optimal planning model of CPDS considering cyber-physical random failures is developed, which is solved using the Monte Carlo Simulation technique. The proposed model is tested on the modified IEEE 33-node distribution system, and the results demonstrate the effectiveness of the proposed method.
Security Vulnerability and Mitigation in Photovoltaic Systems. 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). :1—7.
.
2021. Software and firmware vulnerabilities pose security threats to photovoltaic (PV) systems. When patches are not available or cannot be timely applied to fix vulnerabilities, it is important to mitigate vulnerabilities such that they cannot be exploited by attackers or their impacts will be limited when exploited. However, the vulnerability mitigation problem for PV systems has received little attention. This paper analyzes known security vulnerabilities in PV systems, proposes a multi-level mitigation framework and various mitigation strategies including neural network-based attack detection inside inverters, and develops a prototype system as a proof-of-concept for building vulnerability mitigation into PV system design.
ZGridBC: Zero-Knowledge Proof Based Scalable and Private Blockchain Platform for Smart Grid. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–3.
.
2021. The total number of photovoltaic power producing facilities whose FIT-based ten-year contract expires by 2023 is expected to reach approximately 1.65 million in Japan. If the number of renewable electricity-producing/consuming facilities reached two million, an enormous number of transactions would be invoked beyond blockchain's scalability.We propose mutually cooperative two novel methods to simultaneously solve scalability, data size, and privacy problems in blockchain-based trading platforms for renewable energy environmental value. One is a management scheme of electricity production resources (EPRs) using an extended UTXO token. The other is a data aggregation scheme that aggregates a significant number of smart meter records with evidentiality using zero-knowledge proof (ZKP).
A Reliable Open-Switch Fault Diagnosis Strategy for Grid-tied Photovoltaic Inverter Topology. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). :1–4.
.
2021. In order to increase the availability and reliability of photovoltaic (PV) systems, fault diagnosis and condition monitoring of inverters are of crucial means to meet the goals. Numerous methods are implemented for fault diagnosis of PV inverters, providing robust features and handling massive amount of data. However, existing methods rely on simplistic frameworks that are incapable of inspecting a wide range of intrinsic and explicit features, as well as being time-consuming. In this paper, a novel method based on a multilayer deep belief network (DBN) is suggested for fault diagnosis, which allows the framework to discover the probabilistic reconstruction across its inputs. This approach equips a robust hierarchical generative model for exploiting features associated with faults, interprets functions that are highly variable, and needs lesser prior information. Moreover, the method instantaneously categorizes the fault conditions, which eventually strengthens the adaptability of applying it on a variety of diagnostic problems in an inverter domain. The proposed method is evaluated using multiple input signals at different sampling frequencies. To evaluate the efficacy of DBN, a test model based on a three-phase 2-level grid-tied PV inverter was used. The results show that the method is capable of achieving precise diagnosis operations.
Collaboratively Diagnosing IGBT Open-circuit Faults in Photovoltaic Inverters: A Decentralized Federated Learning-based Method. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society. :1–6.
.
2021. In photovoltaic (PV) systems, machine learning-based methods have been used for fault detection and diagnosis in the past years, which require large amounts of data. However, fault types in a single PV station are usually insufficient in practice. Due to insufficient and non-identically distributed data, packet loss and privacy concerns, it is difficult to train a model for diagnosing all fault types. To address these issues, in this paper, we propose a decentralized federated learning (FL)-based fault diagnosis method for insulated gate bipolar transistor (IGBT) open-circuits in PV inverters. All PV stations use the convolutional neural network (CNN) to train local diagnosis models. By aggregating neighboring model parameters, each PV station benefits from the fault diagnosis knowledge learned from neighbors and achieves diagnosing all fault types without sharing original data. Extensive experiments are conducted in terms of non-identical data distributions, various transmission channel conditions and whether to use the FL framework. The results are as follows: 1) Using data with non-identical distributions, the collaboratively trained model diagnoses faults accurately and robustly; 2) The continuous transmission and aggregation of model parameters in multiple rounds make it possible to obtain ideal training results even in the presence of packet loss; 3) The proposed method allows each PV station to diagnose all fault types without original data sharing, which protects data privacy.
Parameter Setting of New Energy Sources Generator Rapid Frequency Response in Northwest Power Grid Based on Multi-Frequency Regulation Resources Coordinated Controlling. 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP). :218—222.
.
2019. Since 2016, the northwest power grid has organized new energy sources to participate in the rapid frequency regulation research and carried out pilot test work at the sending end large power grid. The experimental results show that new energy generator has the ability to participate in the grid's rapid frequency regulation, and its performance is better than that of conventional power supply units. This paper analyses the requirements for fast frequency control of the sending end large power grid in northwest China, and proposes the segmented participation indexes of photovoltaic and wind power in the frequency regulation of power grids. In accordance with the idea of "clear responsibilities, various types of unit coordination", the parameter setting of new energy sources rapid frequency regulation is completed based on the coordinated control based on multi-frequency regulation resources in northwest power grid. The new energy fast frequency regulation model was established, through the PSASP power grid stability simulation program and the large-scale power grid stability simulation analysis was completed. The simulation results show that the wind power and photovoltaic adopting differential rapid frequency regulation parameters can better utilize the rapid frequency regulation capability of various types of power sources, realize the coordinated rapid frequency regulation of all types of units, and effectively improve the frequency security prevention and control level of the sending end large power grid.
Consumption Ability Estimation of Distribution System Interconnected with Microgrids. 2019 IEEE International Conference on Energy Internet (ICEI). :345–350.
.
2019. With fast development of distributed generation, storages and control techniques, a growing number of microgrids are interconnected with distribution networks. Microgrid capacity that a local distribution system can afford, is important to distribution network planning and microgrids well-organized integration. Therefore, this paper focuses on estimating consumption ability of distribution system interconnected with microgrids. The method to judge rationality of microgrids access plan is put forward, and an index system covering operation security, power quality and energy management is proposed. Consumption ability estimation procedure based on rationality evaluation and interactions is built up then, and requirements on multi-scenario simulation are presented. Case study on a practical distribution system design with multi-microgrids guarantees the validity and reasonableness of the proposed method and process. The results also indicate construction and reinforcement directions for the distribution network.