Visible to the public Biblio

Filters: Keyword is Temperature measurement  [Clear All Filters]
2023-07-28
Hasan, Darwito, Haryadi Amran, Sudarsono, Amang.  2022.  Environmental Condition Monitoring and Decision Making System Using Fuzzy Logic Method. 2022 International Electronics Symposium (IES). :267—271.

Currently, air pollution is still a problem that requires special attention, especially in big cities. Air pollution can come from motor vehicle fumes, factory smoke or other particles. To overcome these problems, a system is made that can monitor environmental conditions in order to know the good and bad of air quality in an environment and is expected to be a solution to reduce air pollution that occurs. The system created will utilize the Wireless Sensor Network (WSN) combined with Waspmote Smart Environment PRO, so that later data will be obtained in the form of temperature, humidity, CO levels and CO2 levels. From the sensor data that has been processed on Waspmote, it will then be used as input for data processing using a fuzzy algorithm. The classification obtained from sensor data processing using fuzzy to monitor environmental conditions there are 5 classifications, namely Very Good, Good, Average, Bad and Dangerous. Later the data that has been collected will be distributed to Meshlium as a gateway and will be stored in the database. The process of sending information between one party to another needs to pay attention to the confidentiality of data and information. The final result of the implementation of this research is that the system is able to classify values using fuzzy algorithms and is able to secure text data that will be sent to the database via Meshlium, and is able to display data sent to the website in real time.

2023-03-17
Kim, Yujin, Liu, Zhan, Jiang, Hao, Ma, T.P., Zheng, Jun-Fei, Chen, Phil, Condo, Eric, Hendrix, Bryan, O'Neill, James A..  2022.  A Study on the Hf0.5Zr0.5O2 Ferroelectric Capacitors fabricated with Hf and Zr Chlorides. 2022 China Semiconductor Technology International Conference (CSTIC). :1–3.
Ferroelectric capacitor memory devices with carbon-free Hf0.5Zr0.5O2 (HZO) ferroelectric films are fabricated and characterized. The HZO ferroelectric films are deposited by ALD at temperatures from 225 to 300°C, with HfCl4 and ZrCl4 as the precursors. Residual chlorine from the precursors is measured and studied systematically with various process temperatures. 10nm HZO films with optimal ALD growth temperature at 275°C exhibit remanent polarization of 25µC/cm2 and cycle endurance of 5×1011. Results will be compared with those from HZO films deposited with carbon containing metal-organic precursors.
2022-10-04
Chen, Cen, Sun, Chengzhi, Wu, Liqin, Ye, Xuerong, Zhai, Guofu.  2021.  Model-Based Quality Consistency Analysis of Permanent Magnet Synchronous Motor Cogging Torque in Wide Temperature Range. 2021 3rd International Conference on System Reliability and Safety Engineering (SRSE). :131–138.
Permanent magnet synchronous motors (PMSM) are widely used in the shafts of industrial robots. The quality consistency of PMSM, derived from both the wide range of operating temperature and inherent uncertainties, significantly influences the application of the PMSM. In this paper, the mechanism of temperature influence on the PMSM is analyzed with the aid of the digital model, and the quantitative relationship between the main PMSM feature, the cogging torque, and the temperature is revealed. Then, the NdFeB remanence in different temperature levels was measured to obtain its temperature coefficient. The finite element method is used to simulate PMSM. The qualitative and quantitative conclusions of cogging torque drop when the temperature rises are verified by experiments. The magnetic performance data of the magnetic tiles of 50 motors were randomly sampled and the cogging torque simulation was carried out under the fixed ambient temperature. The results show that the dispersion significantly increases the stray harmonic components of the cogging torque.
2022-06-06
Shimamoto, Shogo, Kobayashi, Koichi, Yamashita, Yuh.  2020.  Stochastic Model Predictive Control of Energy Management Systems with Human in the Loop. 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE). :60–61.
In this paper, we propose a method of stochastic model predictive control for energy management systems including human-in-the-loop. Here, we consider an air-conditioning system consisting of some rooms. Human decision making about the set temperature is modeled by a discrete-time Markov chain. The finite-time optimal control problem solved in the controller is reduced to a mixed integer linear programming problem.
2022-05-06
Hörmann, Leander B., Pötsch, Albert, Kastl, Christian, Priller, Peter, Springer, Andreas.  2021.  Towards a Distributed Testbed for Wireless Embedded Devices for Industrial Applications. 2021 17th IEEE International Conference on Factory Communication Systems (WFCS). :135–138.
Wireless embedded devices are key elements of Internet-of-Things (IoT) and industrial IoT (IIoT) applications. The complexity of these devices as well as the number of connected devices to networks increase steadily. The high intricacy of the overall system makes it error-prone and vulnerable to attacks and leads to the need to test individual parts or even the whole system. Therefore, this paper presents the concept of a flexible and distributed testbed to evaluate correct behavior in various operation or attack scenarios. It is based on the Robot Operating System (ROS) as communication framework to ensure modularity and expandability. The testbed integrates RF-jamming and measurement devices to evaluate remote attack scenarios and interference issues. An energy harvesting emulation cell is used to evaluate different real-world energy harvesting scenarios. A climatic test chamber allows to investigate the influence of temperature and humidity conditions on the system-under-test. As a testbed application scenario, the automated evaluation of an energy harvesting wireless sensor network designed to instrument automotive engine test benches is presented.
2022-04-12
Duth, Akshay, Nambiar, Abhinav A, Teja, Chintha Bhanu, Yadav, Sudha.  2021.  Smart Door System with COVID-19 Risk Factor Evaluation, Contactless Data Acquisition and Sanitization. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1504—1511.
Thousands of people have lost their life by COVID-19 infection. Authorities have seen the calamities caused by the corona virus in China. So, when the trace of virus was found in India, the only possible way to stop the spread of the virus was to go into lockdown. In a country like India where a major part of the population depends on the daily wages, being in lockdown started affecting their life. People where tend to go out for getting the food items and other essentials, and this caused the spread of virus. Many were infected and many lost their life by this. Due to the pandemic, the whole world was affected and many people working in foreign countries lost their jobs as well. These people who came back to India caused further spread of the virus. The main reason for the spread is lack of hygiene and a proper system to monitor the symptoms. Even though our country was in lockdown for almost 6 months the number of COVID cases doesn't get diminished. It is not practical to extend the lockdown any further, and people have decided to live with the virus. But it is essential to take the necessary precautions while interacting with the society. Automated system for checking that all the COVID protocols are followed and early symptom identification before entering to a place are essential to stop the spread of the infection. This research work proposes a smart door system, which evaluates the COVID-19 risk factors and collects the data of person before entering into any place, thereby ensuring that non-infected people are only entering to the place and thus the spread of virus can be avoided.
2022-03-08
Bhuiyan, Erphan, Sarker, Yeahia, Fahim, Shahriar, Mannan, Mohammad Abdul, Sarker, Subrata, Das, Sajal.  2021.  A Reliable Open-Switch Fault Diagnosis Strategy for Grid-tied Photovoltaic Inverter Topology. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). :1–4.
In order to increase the availability and reliability of photovoltaic (PV) systems, fault diagnosis and condition monitoring of inverters are of crucial means to meet the goals. Numerous methods are implemented for fault diagnosis of PV inverters, providing robust features and handling massive amount of data. However, existing methods rely on simplistic frameworks that are incapable of inspecting a wide range of intrinsic and explicit features, as well as being time-consuming. In this paper, a novel method based on a multilayer deep belief network (DBN) is suggested for fault diagnosis, which allows the framework to discover the probabilistic reconstruction across its inputs. This approach equips a robust hierarchical generative model for exploiting features associated with faults, interprets functions that are highly variable, and needs lesser prior information. Moreover, the method instantaneously categorizes the fault conditions, which eventually strengthens the adaptability of applying it on a variety of diagnostic problems in an inverter domain. The proposed method is evaluated using multiple input signals at different sampling frequencies. To evaluate the efficacy of DBN, a test model based on a three-phase 2-level grid-tied PV inverter was used. The results show that the method is capable of achieving precise diagnosis operations.
2022-02-07
Elbahadır, Hamza, Erdem, Ebubekir.  2021.  Modeling Intrusion Detection System Using Machine Learning Algorithms in Wireless Sensor Networks. 2021 6th International Conference on Computer Science and Engineering (UBMK). :401–406.
Wireless sensor networks (WSN) are used to perceive many data such as temperature, vibration, pressure in the environment and to produce results; it is widely used, including in critical fields such as military, intelligence and health. However, because of WSNs have different infrastructure and architecture than traditional networks, different security measures must be taken. In this study, an intrusion detection system (IDS) is modeled to ensure WSN security. Since the signature, misuse and anomaly based detection methods for intrusion detection systems are insufficient to provide security alone, a hybrid model is proposed in which these methods are used together. In the hybrid model, anomaly rules were defined for attack detection, and machine learning algorithms BayesNet, J48 and Random Forest were used to classify normal and abnormal traffic. Unlike the studies in the literature, CSE-CIC-IDS2018, the most up-to-date data set, was used to create attack profiles. Considering both hardware constraints and battery capacities of WSNs; the data was pre-processed in accordance with data mining principles. The results showed that the developed model has high accuracy and low false alarm rate.
2022-01-31
Devi, P. Dharani, Ilakiya, S..  2021.  A Secure Employee Health Management System Using Werable Technology. 2021 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
An important demand of a wearable health observance system is to soundly exchange the Employees' health data and preventing improper use of black devices. In this project we tend to measure planning wearable sensors device sight abnormal and/or unforeseen things by observance physiological parameters alongside different symptoms. Therefore, necessary facilitate is provided in times of urgent would like. To minimize the health hazards and improving the well-being of employees is to be a major critical role in an organization. As per the report by the Indian Labour Organization, the organization spends an average of 3.94% for GDP on employee treatment. The same study revealed that almost 2.78% million deaths occurs every year and 3.74% million occur non-fatal injuries every year at work. So, the organizations are making towards mitigating the facilities to decimating various IoT technologies and the IoT technology are embedded with modern smart systems, it is easy to monitor every employee in an organization, and also it collects and gather the data and send any critical information by the employees.
2022-01-25
Onibonoje, Moses Oluwafemi.  2021.  IoT-Based Synergistic Approach for Poultry Management System. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1—5.
Poultry farming has contributed immensely to global food security and the economy. Its produces are favourites and hugely subscribed, due to the uniqueness of their nutrients to all categories of people and the alternatives they provide to other high-cholesterol proteins. The increase in the world's population will continuously stretch for an increase in demands for poultry products. A smart way to ensure continuous production and increased yields in various farms is to adopt automated and remote management of poultries. This paper modelled and developed a collaborative system using the synergistic wireless sensor network technology and the internet of things. The system integrated resourcefully selected wireless sensors, mobile phone, other autonomous devices and the internet to remotely monitor and control environmental parameters and activities within the farm. Parameters such as temperature, humidity, water level, food valve level, ammonia gas, illumination are sensed, benchmarked against selected thresholds, and communicated wirelessly to the sink node and the internet cloud. The required control actions can also be initiated remotely by the administrator through messages or command signal. Also, the various parameters and actions can be read or documented in real-time over the web. The system was tested and evaluated to give an average of about 93.7% accuracy in parameters detection and 2s delay in real-time response. Therefore, a modelled system has been developed to provide robust and more intuitive solutions in poultry farming.
2022-01-10
Ren, Sothearin, Kim, Jae-Sung, Cho, Wan-Sup, Soeng, Saravit, Kong, Sovanreach, Lee, Kyung-Hee.  2021.  Big Data Platform for Intelligence Industrial IoT Sensor Monitoring System Based on Edge Computing and AI. 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :480–482.
The cutting edge of Industry 4.0 has driven everything to be converted to disruptive innovation and digitalized. This digital revolution is imprinted by modern and advanced technology that takes advantage of Big Data and Artificial Intelligence (AI) to nurture from automatic learning systems, smart city, smart energy, smart factory to the edge computing technology, and so on. To harness an appealing, noteworthy, and leading development in smart manufacturing industry, the modern industrial sciences and technologies such as Big Data, Artificial Intelligence, Internet of things, and Edge Computing have to be integrated cooperatively. Accordingly, a suggestion on the integration is presented in this paper. This proposed paper describes the design and implementation of big data platform for intelligence industrial internet of things sensor monitoring system and conveys a prediction of any upcoming errors beforehand. The architecture design is based on edge computing and artificial intelligence. To extend more precisely, industrial internet of things sensor here is about the condition monitoring sensor data - vibration, temperature, related humidity, and barometric pressure inside facility manufacturing factory.
2021-08-03
Yang, Jianguo, Lei, Dengyun, Chen, Deyang, Li, Jing, Jiang, Haijun, Ding, Qingting, Luo, Qing, Xue, Xiaoyong, Lv, Hangbing, Zeng, Xiaoyang et al..  2020.  A Machine-Learning-Resistant 3D PUF with 8-layer Stacking Vertical RRAM and 0.014% Bit Error Rate Using In-Cell Stabilization Scheme for IoT Security Applications. 2020 IEEE International Electron Devices Meeting (IEDM). :28.6.1–28.6.4.
In this work, we propose and demonstrate a multi-layer 3-dimensional (3D) vertical RRAM (VRRAM) PUF with in-cell stabilization scheme to improve both cost efficiency and reliability. An 8-layer VRRAM array was manufactured with excellent uniformity and good endurance of \textbackslashtextgreater107. Apart from the variation in RRAM resistance, enhanced randomness is obtained thanks to the parasitic IR drop and abundant sneak current paths in 3D VRRAM. To deal with the common issue of unstable bits in PUF output, in-cell stabilization is proposed by first employing asymmetric biasing to detect the unstable bits and then exploiting reprogramming to expand the deviation to stabilize the output. The bit error rate is reduced by \textbackslashtextgreater7X (68X) for 3(5) times reprogramming. The proposed PUF features excellent resistance against machine learning attack and passes both National Institute of Standards and Technology (NIST) 800-22 and NIST 800-90B test suites.
2021-06-28
Latha Ch., Mary, Bazil Raj, A.A., Abhikshit, L..  2020.  Design and Implementation of a Secure Physical Unclonable Function In FPGA. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :1083–1089.
A Field Programmable Gate Array (FPGA) is a digital Integrated Circuit made up of interconnected functional blocks, which can be programmed by the end-user to perform required logic functions. As FPGAs are re-programmable, partially re-configurable and have lowertime to market, FPGA has become a vital component in the field of electronics. FPGAs are undergoing many security issues as the adversaries are trying to make profits by replicating the original design, without any investment. The major security issues are cloning, counterfeiting, reverse engineering, Physical tampering, and insertion of malicious components, etc. So, there is a need for security of FPGAs. A Secret key must be embedded in an IC, to provide identification and authentication to it. Physical Unclonable Functions (PUFs) can provide these secret keys, by using the physical properties of the chip. These physical properties are not reproducible even by the manufacturer. Hence the responses produced by the PUF are unique for every individual chip. The method of generating unique binary signatures helps in cryptographic key generation, digital rights management, Intellectual Property (IP) protection, IC counterfeit prevention, and device authentication. The PUFs are very promising in signature generation in the field of hardware security. In this paper, the secret binary responses is generated with the help of a delay based Ring Oscillator PUF, which does not use a clock circuit in its architecture.
2021-02-10
Giechaskiel, I., Rasmussen, K. B., Szefer, J..  2020.  C3APSULe: Cross-FPGA Covert-Channel Attacks through Power Supply Unit Leakage. 2020 IEEE Symposium on Security and Privacy (SP). :1728—1741.
Field-Programmable Gate Arrays (FPGAs) are versatile, reconfigurable integrated circuits that can be used as hardware accelerators to process highly-sensitive data. Leaking this data and associated cryptographic keys, however, can undermine a system's security. To prevent potentially unintentional interactions that could break separation of privilege between different data center tenants, FPGAs in cloud environments are currently dedicated on a per-user basis. Nevertheless, while the FPGAs themselves are not shared among different users, other parts of the data center infrastructure are. This paper specifically shows for the first time that powering FPGAs, CPUs, and GPUs through the same power supply unit (PSU) can be exploited in FPGA-to-FPGA, CPU-to-FPGA, and GPU-to-FPGA covert channels between independent boards. These covert channels can operate remotely, without the need for physical access to, or modifications of, the boards. To demonstrate the attacks, this paper uses a novel combination of "sensing" and "stressing" ring oscillators as receivers on the sink FPGA. Further, ring oscillators are used as transmitters on the source FPGA. The transmitting and receiving circuits are used to determine the presence of the leakage on off-the-shelf Xilinx boards containing Artix 7 and Kintex 7 FPGA chips. Experiments are conducted with PSUs by two vendors, as well as CPUs and GPUs of different generations. Moreover, different sizes and types of ring oscillators are also tested. In addition, this work discusses potential countermeasures to mitigate the impact of the cross-board leakage. The results of this paper highlight the dangers of shared power supply units in local and cloud FPGAs, and therefore a fundamental need to re-think FPGA security for shared infrastructures.
2021-01-28
Krasnov, A. N., Prakhova, M. Y., Novikova, U. V..  2020.  Ensuring Cybersecurity of Data Transmission in Limited Energy Consumption Networks. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1—5.

In the northern gas fields, most data are transmitted via wireless networks, which requires special transmission security measures. Herewith, the gas field infrastructure dictates cybersecurity modules to not only meet standard requirements but also ensure reduced energy consumption. The paper discusses the issue of building such a module for a process control system based on the RTP-04M recorder operating in conjunction with an Android-based mobile device. The software options used for the RSA and Diffie-Hellman data encryption and decryption algorithms on both the RTP-04M and the Android-based mobile device sides in the Keil μVision4 and Android Studio software environments, respectively, have shown that the Diffie-Hellman algorithm is preferable. It provides significant savings in RAM and CPU resources and power consumption of the recorder. In terms of energy efficiency, the implemented programs have been analyzed in the Android Studio (Android Profiler) and Simplicity Studio (Advanced Energy Monitor) environments. The integration of this module into the existing software will improve the field's PCS cybersecurity level due to protecting data transmitted from third-party attacks.

2020-12-21
Figueiredo, N. M., Rodríguez, M. C..  2020.  Trustworthiness in Sensor Networks A Reputation-Based Method for Weather Stations. 2020 International Conference on Omni-layer Intelligent Systems (COINS). :1–6.
Trustworthiness is a soft-security feature that evaluates the correct behavior of nodes in a network. More specifically, this feature tries to answer the following question: how much should we trust in a certain node? To determine the trustworthiness of a node, our approach focuses on two reputation indicators: the self-data trust, which evaluates the data generated by the node itself taking into account its historical data; and the peer-data trust, which utilizes the nearest nodes' data. In this paper, we show how these two indicators can be calculated using the Gaussian Overlap and Pearson correlation. This paper includes a validation of our trustworthiness approach using real data from unofficial and official weather stations in Portugal. This is a representative scenario of the current situation in many other areas, with different entities providing different kinds of data using autonomous sensors in a continuous way over the networks.
2020-11-30
Beran, P., Klöhn, M., Hohe, H..  2019.  Measurement Characteristics of Different Integrated Three-Dimensional Magnetic Field Sensors. IEEE Magnetics Letters. 10:1–5.
Datasheets of different commercially available integrated sensors for vector measurements of magnetic fields provide typical specifications, such as measurement range, sampling rate, resolution, and noise. Other characteristics of interest, such as linearity, cross-sensitivity, remanent magnetization, and drifts over temperature, are mostly missing. This letter presents testing results of those characteristics of integrated three-dimensional (3-D) sensors working with different sensor principles and technologies in a reproducible measuring process. The sensors are exposed to temperatures from -20 °C to 80 °C and are cycled in hysteresis loops in fields up to 2.5 mT. For applying high-accuracy magnetic fields, a calibrated 3-D Helmholtz coil setup is used. Commercially available integrated 3-D magnetic field sensors are put in operation on a printed circuit board using nonmagnetic passive components. All sensors are configured for best measurement accuracy according to their data-sheets. The results show that sensors based on anisotropic magnetoresistance have high accuracy and low offsets yet also a high degree of nonlinearity. Hall-based sensors show good linearity but also high cross-sensitivity. A magnetic remanence appears for Hall-based sensors with integrated magnetic concentrators as well as for sensors using anisotropic magnetoresistance. Nearly all sensors show remaining drifts over temperature regarding offset and sensitivity up to several percentages.
2020-08-28
Karaküçük, Ahmet, Dirik, A. Emir.  2019.  Source Device Attribution of Thermal Images Captured with Handheld IR Cameras. 2019 11th International Conference on Electrical and Electronics Engineering (ELECO). :547—551.

Source camera attribution of digital images has been a hot research topic in digital forensics literature. However, the thermal cameras and the radiometric data they generate stood as a nascent topic, as such devices are expensive and tailored for specific use-cases - not adapted by the masses. This has changed dramatically, with the low-cost, pluggable thermal-camera add-ons to smartphones and similar low-cost pocket-size thermal cameras introduced to consumers recently, which enabled the use of thermal imaging devices for the masses. In this paper, we are going to investigate the use of an established source device attribution method on radiometric data produced with a consumer-level, low-cost handheld thermal camera. The results we represent in this paper are promising and show that it is quite possible to attribute thermal images with their source camera.

2020-07-06
Gries, Stefan, Ollesch, Julius, Gruhn, Volker.  2019.  Modeling Semantic Dependencies to Allow Flow Monitoring in Networks with Black-Box Nodes. 2019 IEEE/ACM 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS). :14–17.
Cyber-Physical Systems are distributed, heterogeneous systems that communicate and exchange data over networks. This creates semantic dependencies between the individual components. In the event of an error, it is difficult to identify the source of an occurring error that is spread due to those underlying dependencies. Tools such as the Information Flow Monitor solve this problem, but require compliance with a protocol. Nodes that do not adhere to this protocol prevent errors from being tracked. In this paper, we present a way to bridge these black-box nodes with a dependency model and to still be able to use them in monitoring tools.
2020-05-18
Zhong, Guo-qiang, Wang, Huai-yu, Zheng, Shuai, JIA, Bao-zhu.  2019.  Research on fusion diagnosis method of thermal fault of Marine diesel engine. 2019 Chinese Automation Congress (CAC). :5371–5375.
In order to avoid the situation that the diagnosis model based on single sensor data is easily disturbed by environmental noise and the diagnosis accuracy is low, an intelligent fault fusion diagnosis method for marine diesel engine is proposed. Firstly, the support vector machine which is optimized by genetic algorithm is used to learn the fault sample data from different sensors, then multiple fault diagnosis models and results can be got. After that, multiple groups of diagnosis results are taken as evidence bodies and fused by evidence theory to obtain more accurate diagnosis results. By analyzing the sample data obtained from the fault simulation experiment of marine diesel engine based on AVL BOOST software, the proposed method can improve the fault diagnosis accuracy of marine diesel engine and reduce the uncertainty value of diagnosis results.
2020-02-24
Song, Juncai, Zhao, Jiwen, Dong, Fei, Zhao, Jing, Xu, Liang, Wang, Lijun, Xie, Fang.  2019.  Demagnetization Modeling Research for Permanent Magnet in PMSLM Using Extreme Learning Machine. 2019 IEEE International Electric Machines Drives Conference (IEMDC). :1757–1761.
This paper investigates the temperature demagnetization modeling method for permanent magnets (PM) in permanent magnet synchronous linear motor (PMSLM). First, the PM characteristics are presented, and finite element analysis (FEA) is conducted to show the magnetic distribution under different temperatures. Second, demagnetization degrees and remanence of the five PMs' experiment sample are actually measured in stove at temperatures varying from room temperature to 300 °C, and to obtain the real data for next-step modeling. Third, machine learning algorithm called extreme learning machine (ELM) is introduced to map the nonlinear relationships between temperature and demagnetization characteristics of PM and build the demagnetization models. Finally, comparison experiments between linear modeling method, polynomial modeling method, and ELM can certify the effectiveness and advancement of this proposed method.
2020-02-17
Facon, Adrien, Guilley, Sylvain, Ngo, Xuan-Thuy, Perianin, Thomas.  2019.  Hardware-enabled AI for Embedded Security: A New Paradigm. 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom). :80–84.

As chips become more and more connected, they are more exposed (both to network and to physical attacks). Therefore one shall ensure they enjoy a sufficient protection level. Security within chips is accordingly becoming a hot topic. Incident detection and reporting is one novel function expected from chips. In this talk, we explain why it is worthwhile to resort to Artificial Intelligence (AI) for security event handling. Drivers are the need to aggregate multiple and heterogeneous security sensors, the need to digest this information quickly to produce exploitable information, and so while maintaining a low false positive detection rate. Key features are adequate learning procedures and fast and secure classification accelerated by hardware. A challenge is to embed such security-oriented AI logic, while not compromising chip power budget and silicon area. This talk accounts for the opportunities permitted by the symbiotic encounter between chip security and AI.

2019-09-30
Elbidweihy, H., Arrott, A. S., Provenzano, V..  2018.  Modeling the Role of the Buildup of Magnetic Charges in Low Anisotropy Polycrystalline Materials. IEEE Transactions on Magnetics. 54:1–5.

A Stoner-Wohlfarth-type model is used to demonstrate the effect of the buildup of magnetic charges near the grain boundaries of low anisotropy polycrystalline materials, revealed by measuring the magnetization during positive-field warming after negative-field cooling. The remnant magnetization after negative-field cooling has two different contributions. The temperature-dependent component is modeled as an assembly of particles with thermal relaxation. The temperature-independent component is modeled as an assembly of particles overcoming variable phenomenological energy barriers corresponding to the change in susceptibility when the anisotropy constant changes its sign. The model is applicable to soft-magnetic materials where the buildup of the magnetic charges near the grain boundaries creates demagnetizing fields opposing, and comparable in magnitude to, the anisotropy field. The results of the model are in qualitative agreement with published data revealing the magneto-thermal characteristics of polycrystalline gadolinium.

2019-09-11
Duncan, A., Jiang, L., Swany, M..  2018.  Repurposing SoC Analog Circuitry for Additional COTS Hardware Security. 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :201–204.

This paper introduces a new methodology to generate additional hardware security in commercial off-the-shelf (COTS) system-on-a-chip (SoC) integrated circuits (ICs) that have already been fabricated and packaged. On-chip analog hardware blocks such as analog to digital converters (ADCs), digital to analog converters (DACs) and comparators residing within an SoC are repurposed and connected to one another to generate unique physically unclonable function (PUF) responses. The PUF responses are digitized and processed on-chip to create keys for use in encryption and device authentication activities. Key generation and processing algorithms are presented that minimize the effects of voltage and temperature fluctuations to maximize the repeatability of a key within a device. Experimental results utilizing multiple on-chip analog blocks inside a common COTS microcontroller show reliable key generation with minimal overhead.

2019-05-01
Berjab, N., Le, H. H., Yu, C., Kuo, S., Yokota, H..  2018.  Hierarchical Abnormal-Node Detection Using Fuzzy Logic for ECA Rule-Based Wireless Sensor Networks. 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC). :289-298.

The Internet of things (IoT) is a distributed, networked system composed of many embedded sensor devices. Unfortunately, these devices are resource constrained and susceptible to malicious data-integrity attacks and failures, leading to unreliability and sometimes to major failure of parts of the entire system. Intrusion detection and failure handling are essential requirements for IoT security. Nevertheless, as far as we know, the area of data-integrity detection for IoT has yet to receive much attention. Most previous intrusion-detection methods proposed for IoT, particularly for wireless sensor networks (WSNs), focus only on specific types of network attacks. Moreover, these approaches usually rely on using precise values to specify abnormality thresholds. However, sensor readings are often imprecise and crisp threshold values are inappropriate. To guarantee a lightweight, dependable monitoring system, we propose a novel hierarchical framework for detecting abnormal nodes in WSNs. The proposed approach uses fuzzy logic in event-condition-action (ECA) rule-based WSNs to detect malicious nodes, while also considering failed nodes. The spatiotemporal semantics of heterogeneous sensor readings are considered in the decision process to distinguish malicious data from other anomalies. Following our experiments with the proposed framework, we stress the significance of considering the sensor correlations to achieve detection accuracy, which has been neglected in previous studies. Our experiments using real-world sensor data demonstrate that our approach can provide high detection accuracy with low false-alarm rates. We also show that our approach performs well when compared to two well-known classification algorithms.