Visible to the public Biblio

Filters: Keyword is Resonant frequency  [Clear All Filters]
2022-12-07
Ariturk, Gokhan, Almuqati, Nawaf R., Yu, Yao, Yen, Ernest Ting-Ta, Fruehling, Adam, Sigmarsson, Hjalti H..  2022.  Wideband Hybrid Acoustic-Electromagnetic Filters with Prescribed Chebyshev Functions. 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022. :887—890.
The achievable bandwidth in ladder acoustic filters is strictly limited by the electromechanical coupling coefficient (k;) in conventional ladder-acoustic filters. Furthermore, their out-of-band rejection is inherently weak due to the frequency responses of the shunt or series-connected acoustic resonators. This work proposes a coupling-matrix-based solution for both issues by employing acoustic and electromagnetic resonators within the same filter prototype using prescribed Chebyshev responses. It has been shown that significantly much wider bandwidths, that cannot be achieved with acoustic-only filters, can be obtained. An important strength of the proposed method is that a filter with a particular FBW can be designed with a wide range of acoustic resonators with different k; values. An 14 % third-order asymmetrical-response filter is designed and fabricated using electromagnetic resonators and an acoustic resonator with a k; of 3.5 %.
Chedurupalli, Shivakumar, Karthik Reddy, K, Akhil Raman, T S, James Raju, K.C.  2022.  High Overtone Bulk Acoustic Resonator with improved effective coupling coefficient. 2022 IEEE International Symposium on Applications of Ferroelectrics (ISAF). :1—4.
A High Overtone Bulk Acoustic Wave Resonator (HBAR) is fabricated with the active material being Ba0.5Sr0.5TiO3 (BST). Owing to its strong electrostrictive property, the BST needs an external dc voltage to yield an electromechanical coupling. The variations in resonances with respect to varying dc fields are noted and analyzed with the aid of an Resonant Spectrum Method (RSM) model. Effective coupling coefficient \$(\textbackslashmathrmK\_\textbackslashmathrme\textbackslashmathrmf\textbackslashmathrmfˆ2(%))\$ in the case of employed MIM based structure is observed and the comparisons are drawn with the corresponding values of the CPC structures. An improvement of 70% in the value of \$\textbackslashmathrmK\_\textbackslashmathrme\textbackslashmathrmf\textbackslashmathrmfˆ2\$(%)at 1.34 GHz is witnessed in MIM structures because of direct access to the bottom electrode of the structure.
2022-07-29
Bhosale, Kalyani, Chen, Chao-Yu, Li, Ming-Huang, Li, Sheng-Shian.  2021.  Standard CMOS Integrated Ultra-Compact Micromechanical Oscillating Active Pixel Arrays. 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). :157–160.
This work demonstrates an ultra-compact low power oscillating micromechanical active pixel array based on a 0.35 μm back-end of line (BEOL)-embedded CMOS-MEMS technology. Each pixel consists of a 3-MHz clamped-clamped beam (CCB) MEMS resonator and a power scalable transimpedance amplifier (TIA) that occupies a small area of 70 × 60 μm2 and draws only 85 μW/pixel. The MEMS resonator is placed next to the TIA with less than 10 μm spacing thanks to the well-defined etch stops in the titanium nitride composite (TiN-C) CMOS-MEMS platform. A multiplexing phase-locked loop (PLL)-driven oscillator is employed to demonstrate the chip functionality. In particular, a nonlinear operation of the resonator tank is used to optimize the phase noise (PN) performance and Allan deviation (ADEV) behavior. The ADEV of 420 ppb averaged over best 3-pixels is exhibited based on such a nonlinear vibration operation.
2021-11-29
Hassanien, Ahmed E., Gong, Songbin.  2021.  An Acoustic Resonator with Electromechanical Coupling of 16% and Low TCF at 5.4 GHz. 2021 IEEE International Ultrasonics Symposium (IUS). :1–4.
In this paper, an acoustic resonator with frequency \textbackslashtextgreater 5 GHz is designed, implemented, and measured with electromechanical coupling exceeding 15% and low temperature dependence compared to conventional Lamb-wave resonators. The acoustic resonator is optimized for the S4 mode Lamb waves in a bi-morph composed of Lithium Niobate and Silicon Dioxide. The resonator optimization is based on adjusting the thickness of different materials in the bimorph to maximize the coupling and minimize temperature dependence simultaneously. The achieved specifications are adequate for 5G sub-6 GHz frequency band n46 in addition to Wi-Fi new bands between 5 and 6 GHz.
Houlihan, Ruth, Timothy, Michael, Duffy, Conor, MacLoughlin, Ronan, Olszewski, Oskar.  2021.  Acoustic Structural Coupling In A Silicon Based Vibrating Mesh Nebulizer. 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers). :615–618.
We present results from a vibrating mesh nebulizer for which the mesh is a micro-machined silicon membrane perforated with up to a thousand micron-sized, pyramidal holes. Finite element modelling is used to better understand the measured results of the nebulizer when tested in the dry state as well as when loaded with a liquid. In particular, we found that the frequency response of the system is well represented by the superposition of the frequency response of its two main subcomponents: the piezo driving unit and the silicon membrane. As such, the system is found to have resonance peaks for which the complete assembly flexes in addition to peaks that correspond to the flexural resonance modes of the silicon membrane on its own. Similarly, finite element modelling was used to understand differences observed between the frequency response measured on the nebulizer in the dry condition compared to its wet or liquid loaded operation. It was found that coupling between the structural and the acoustic domains shifts the resonance peaks significantly to the left of the frequency plot. In fact, it was found that at the operating frequency of the nebulizer, the system resonates in a (0,3) when the membrane is loaded with a liquid compared with a (0,2) resonance mode when it is operating in the dry state.
Fathelbab, Wael M..  2021.  Novel Acoustic Wave Networks Comprising Resonators Achieving Prescribed Coupling. 2021 IEEE 21st Annual Wireless and Microwave Technology Conference (WAMICON). :1–4.
Novel acoustic wave networks comprising resonators achieving prescribed coupling are proposed. The design methodology is based on classic network synthesis of doubly- and/or singly-terminated networks. The synthesis of LTE Band 25 contiguous duplexer prototype is performed and its electrical characteristics are presented.
2020-04-24
Bahman Soltani, Hooman, Abiri, Habibollah.  2018.  Criteria for Determining Maximum Theoretical Oscillating Frequency of Extended Interaction Oscillators for Terahertz Applications. IEEE Transactions on Electron Devices. 65:1564—1571.

Extended interaction oscillators (EIOs) are high-frequency vacuum-electronic sources, capable to generate millimeter-wave to terahertz (THz) radiations. They are considered to be potential sources of high-power submillimeter wavelengths. Different slow-wave structures and beam geometries are used for EIOs. This paper presents a quantitative figure of merit, the critical unloaded oscillating frequency (fcr) for any specific geometry of EIO. This figure is calculated and tested for 2π standing-wave modes (a common mode for EIOs) of two different slowwave structures (SWSs), one double-ridge SWS driven by a sheet electron beam and one ring-loaded waveguide driven by a cylindrical beam. The calculated fcrs are compared with particle-in-cell (PIC) results, showing an acceptable agreement. The derived fcr is calculated three to four orders of magnitude faster than the PIC solver. Generality of the method, its clear physical interpretation and computational rapidity, makes it a convenient approach to evaluate the high-frequency behavior of any specified EIO geometry. This allows to investigate the changes in geometry to attain higher frequencies at THz spectrum.

Luo, Xuesong, Wang, Shaoping.  2018.  Multi-work Condition Modeling and Performance Analysis of Linear Oscillating Actuators. 2018 IEEE International Conference on Prognostics and Health Management (ICPHM). :1—7.

Linear oscillating actuators are emerging electrical motors applied to direct-drive electromechanical systems. They merit high efficiency and quick dynamical property due to the unique structure of spring oscillator. Resonant principle is the base of their high performance, which however, is easily influenced by various load, complex environment and mechanical failure. This paper studies the modeling of linear oscillating actuators in multi-work condition. Three kinds of load are considered in performance evaluation model. Simulations are conducted at different frequencies to obtain the actuator behavior, especially at non-resonance frequencies. A method of constant impedance angle is proposed to search the best working points in sorts of conditions. Eventually, analytical results reflect that the resonant parameter would drift with load, while linear oscillating actuators exhibits robustness in efficiency performance. Several evaluating parameters are concluded to assess the actuator health status.

Noeren, Jannis, Parspour, Nejila.  2019.  A Dynamic Model for Contactless Energy Transfer Systems. 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW). :297—301.

Inductive contactless energy transfer (CET) systems show a certain oscillating transient behavior of inrush currents on both system sides. This causes current overshoots in the electrical components and has to be considered for the system dimensioning. This paper presents a simple and yet very accurate model, which describes the dynamic behavior of series-series compensated inductive CET systems. This model precisely qualifies the systems current courses for both sides in time domain. Additionally, an analysis in frequency domain allows further knowledge for parameter estimation. Since this model is applicable for purely resistive loads and constant voltage loads with bridge rectifiers, it is very practicable and can be useful for control techniques and narameter estimation.

2020-02-10
Tenentes, Vasileios, Das, Shidhartha, Rossi, Daniele, Al-Hashimi, Bashir M..  2019.  Run-time Detection and Mitigation of Power-Noise Viruses. 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :275–280.
Power-noise viruses can be used as denial-of-service attacks by causing voltage emergencies in multi-core microprocessors that may lead to data corruptions and system crashes. In this paper, we present a run-time system for detecting and mitigating power-noise viruses. We present voltage noise data from a power-noise virus and benchmarks collected from an Arm multi-core processor, and we observe that the frequency of voltage emergencies is dramatically increasing during the execution of power-noise attacks. Based on this observation, we propose a regression model that allows for a run-time estimation of the severity of voltage emergencies by monitoring the frequency of voltage emergencies and the operating frequency of the microprocessor. For mitigating the problem, during the execution of critical tasks that require protection, we propose a system which periodically evaluates the severity of voltage emergencies and adapts its operating frequency in order to honour a predefined severity constraint. We demonstrate the efficacy of the proposed run-time system.
2020-01-13
Gou, Yue, Dai, Yu-yu.  2019.  Simulation Study on Wideband Transducer with Longitudinal-Flexural Coupling Vibration. 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :1–4.
This paper designed a longitudinal bending coupled piezoelectric transducer. The transducer is composed of a rear metal block, a longitudinally polarized piezoelectric ceramic piece and a slotted round front cover. The longitudinal vibration of the piezoelectric oscillators drive the front cover to generate bending vibration to widen the operating frequency band while reducing the fluctuation of transmission voltage response. In this paper, the design method of this multimode coupled transducer is given, and the method is verified by numerical simulation. The results show that the analytical theory and numerical simulation results have good consistency. This longitudinal-flexural coupled vibration transducer widens the bandwidth while preserving the emission voltage response.
Jiang, Tianyu, Ju, Zhenyi, Liu, Houfang, Yang, Fan, Tian, He, Fu, Jun, Ren, Tian-Ling.  2019.  High sensitive surface-acoustic-wave optical sensor based on two-dimensional perovskite. 2019 International Conference on IC Design and Technology (ICICDT). :1–4.
Surface acoustic wave (SAW) optical sensor based on two-dimensional (2D) sensing layer can always provide extremely high sensitivity. As an attractive option, the application of exfoliated 2D perovskite on acousto-optic coupling optical sensor is investigated. In this work, exfoliated 2D (PEA)2PbI4 sheet was transferred as a sensing layer onto the delay area of a dual-port SAW resonator with resonant frequency 497 MHz. From the response under 532 nm laser with intensity of 0.9 mW/cm2, a largest frequency shift of 13.92 MHz was observed. The ultrahigh sensitivity up to 31.6 ppm/(μW/cm2) was calculated by experiment results. We also carried out theoretical analysis and finite element simulation of 3D model to demonstrate the mechanism and validity for optical sensing. The fabricated optical sensor expressed great potential for a variety of optical applications.
2018-12-10
Khan, M., Reza, M. Q., Sirdeshmukh, S. P. S. M. A..  2017.  A prototype model development for classification of material using acoustic resonance spectroscopy. 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). :128–131.

In this work, a measurement system is developed based on acoustic resonance which can be used for classification of materials. Basically, the inspection methods based on acoustic, utilized for containers screening in the field, identification of defective pills hold high significance in the fields of health, security and protection. However, such techniques are constrained by costly instrumentation, offline analysis and complexities identified with transducer holder physical coupling. So a simple, non-destructive and amazingly cost effective technique in view of acoustic resonance has been formulated here for quick data acquisition and analysis of acoustic signature of liquids for their constituent identification and classification. In this system, there are two ceramic coated piezoelectric transducers attached at both ends of V-shaped glass, one is act as transmitter and another as receiver. The transmitter generates sound with the help of white noise generator. The pick up transducer on another end of the V-shaped glass rod detects the transmitted signal. The recording is being done with arduino interfaced to computer. The FFTs of recorded signals are being analyzed and the resulted resonant frequency observed for water, water+salt and water+sugar are 4.8 KHz, 6.8 KHz and 3.2 KHz respectively. The different resonant frequency in case different sample is being observed which shows that the developed prototype model effectively classifying the materials.

2018-05-02
Jian, R., Chen, Y., Cheng, Y., Zhao, Y..  2017.  Millimeter Wave Microstrip Antenna Design Based on Swarm Intelligence Algorithm in 5G. 2017 IEEE Globecom Workshops (GC Wkshps). :1–6.

In order to solve the problem of millimeter wave (mm-wave) antenna impedance mismatch in 5G communication system, a optimization algorithm for Particle Swarm Ant Colony Optimization (PSACO) is proposed to optimize antenna patch parameter. It is proved that the proposed method can effectively achieve impedance matching in 28GHz center frequency, and the return loss characteristic is obviously improved. At the same time, the nonlinear regression model is used to solve the nonlinear relationship between the resonant frequency and the patch parameters. The Elman Neural Network (Elman NN) model is used to verify the reliability of PSACO and nonlinear regression model. Patch parameters optimized by PSACO were introduced into the nonlinear relationship, which obtained error within 2%. The method proposed in this paper improved efficiency in antenna design.

2018-01-10
Kuo, J., Lal, A..  2017.  Wideband material detection for spoof resistance in GHz ultrasonic fingerprint sensing. 2017 IEEE International Ultrasonics Symposium (IUS). :1–1.
One of the primary motivations for using ultrasound reflectometry for fingerprint imaging is the promise of increased spoof resistance over conventional optical or capacitive sensing approaches due to the ability for ultrasound to determine the elastic impedance of the imaged material. A fake 3D printed plastic finger can therefore be easily distinguished from a real finger. However, ultrasonic sensors are still vulnerable to materials that are similar in impedance to tissue, such as water or rubber. Previously we demonstrated an ultrasonic fingerprint reader operating with 1.3GHz ultrasound based on pulse echo impedance imaging on the backside silicon interface. In this work, we utilize the large bandwidth of these sensors to differentiate between a finger and materials with similar impedances using the frequency response of elastic impedance obtained by transducer excitation with a wideband RF chirp signal. The reflected signal is a strong function of impedance mismatch and absorption [Hoople 2015].
2017-12-20
Matsuzaki, H., Osaki, T., Kawaguchi, K., Takagi, S., Ichiyanagi, M., Unga, J., Suzuki, R., Maruyama, K., Azuma, T..  2017.  Behavior of the oscillating microbubble clusters trapped in focused ultrasound field. 2017 IEEE International Ultrasonics Symposium (IUS). :1–4.

Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few ({\textbackslash}textless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- {\textbackslash}textbar{\textbackslash}textbar

2017-03-08
Numan-Al-Mobin, A. M., Cross, W. M., Kellar, J. J., Anagnostou, D. E..  2015.  RFID integrated QR code tag antenna. 2015 IEEE MTT-S International Microwave Symposium. :1–3.

This paper presents an entirely new RFID tag antenna design that incorporates the QR (Quick Response) code for security purposes. The tag antenna is designed to work at 2.45 GHz frequency. The RFID integrated QR code tag antenna is printed with an additive material deposition system that enables to produce a low cost tag antenna with extended security.

2015-05-05
Kurian, N.A., Thomas, A., George, B..  2014.  Automated fault diagnosis in Multiple Inductive Loop Detectors. India Conference (INDICON), 2014 Annual IEEE. :1-5.

Multiple Inductive Loop Detectors are advanced Inductive Loop Sensors that can measure traffic flow parameters in even conditions where the traffic is heterogeneous and does not conform to lanes. This sensor consists of many inductive loops in series, with each loop having a parallel capacitor across it. These inductive and capacitive elements of the sensor may undergo open or short circuit faults during operation. Such faults lead to erroneous interpretation of data acquired from the loops. Conventional methods used for fault diagnosis in inductive loop detectors consume time and effort as they require experienced technicians and involve extraction of loops from the saw-cut slots on the road. This also means that the traffic flow parameters cannot be measured until the sensor system becomes functional again. The repair activities would also disturb traffic flow. This paper presents a method for automating fault diagnosis for series-connected Multiple Inductive Loop Detectors, based on an impulse test. The system helps in the diagnosis of open/short faults associated with the inductive and capacitive elements of the sensor structure by displaying the fault status conveniently. Since the fault location as well as the fault type can be precisely identified using this method, the repair actions are also localised. The proposed system thereby results in significant savings in both repair time and repair costs. An embedded system was developed to realize this scheme and the same was tested on a loop prototype.