Visible to the public Biblio

Filters: Keyword is Robot sensing systems  [Clear All Filters]
2023-06-22
Ramneet, Mudita, Gupta, Deepali.  2022.  ASMBoT: An Intelligent Sanitizing Robot in the Coronavirus Outbreak. 2022 1st IEEE International Conference on Industrial Electronics: Developments & Applications (ICIDeA). :106–109.
Technology plays a vital role in our lives to meet basic hygiene necessities. Currently, the whole world is facing an epidemic situation and the practice of using sanitizers is common nowadays. Sanitizers are used by people to sanitize their hands and bodies. It is also used for sanitizing objects that come into contact with the machine. While sanitizing a small area, people manage to sanitize via pumps, but it becomes difficult to sanitize the same area every day. One of the most severe sanitation concerns is a simple, economic and efficient method to adequately clean the indoor and outdoor environments. In particular, effective sanitization is required for people working in a clinical environment. Recently, some commonly used sanitizer techniques include electric sanitizer spray guns, electric sanitizer disinfectants, etc. However, these sanitizers are not automated, which means a person is required to roam personally with the device to every place to spray the disinfectant or sanitize an area. Therefore, a novel, cost-effective automatic sanitizing machine (ASM) named ASMBoT is designed that can dispense the sanitizer effectively by solving the aforementioned problems.
2023-03-17
Wang, Yushi, Kamezaki, Mitsuhiro, Wang, Qichen, Sakamoto, Hiroyuki, Sugano, Shigeki.  2022.  3-Axis Force Estimation of a Soft Skin Sensor using Permanent Magnetic Elastomer (PME) Sheet with Strong Remanence. 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). :302–307.
This paper describes a prototype of a novel Permanent Magnetic Elastomer (PME) sheet based skin sensor for robotic applications. Its working principle is to use a Hall effect transducer to measure the change of magnetic field. PME is a polymer that has Neodymium particles distributed inside it, after strong magnetization for anisotropy, the PME acquires strong remanent magnetization that can be comparable to that of a permanent magnet, in this work, we made improvement of the strength of the magnetic field of PME, so it achieved magnetic strength as high as 25 mT when there is no deformation. When external forces apply on the sensor, the deformation of PME causes a change in the magnetic field due to the change in the alignment of the magnetic particles. Compared with other soft magnetic sensors that employ similar technology, we implemented linear regression method to simplify the calibration, so we focus on the point right above the magnetometer. An MLX90393 chip is installed at the bottom of the PME as the magnetometer. Experimental results show that it can measure forces from 0.01–10 N. Calibration is confirmed effective even for shear directions when the surface of PME is less than 15 x 15 mm.
ISSN: 2159-6255
2023-03-06
Gori, Monica, Volpe, Gualtiero, Cappagli, Giulia, Volta, Erica, Cuturi, Luigi F..  2021.  Embodied multisensory training for learning in primary school children. 2021 {IEEE} {International} {Conference} on {Development} and {Learning} ({ICDL}). :1–7.
Recent scientific results show that audio feedback associated with body movements can be fundamental during the development to learn new spatial concepts [1], [2]. Within the weDraw project [3], [4], we have investigated how this link can be useful to learn mathematical concepts. Here we present a study investigating how mathematical skills changes after multisensory training based on human-computer interaction (RobotAngle and BodyFraction activities). We show that embodied angle and fractions exploration associated with audio and visual feedback can be used in typical children to improve cognition of spatial mathematical concepts. We finally present the exploitation of our results: an online, optimized version of one of the tested activity to be used at school. The training result suggests that audio and visual feedback associated with body movements is informative for spatial learning and reinforces the idea that spatial representation development is based on sensory-motor interactions.
2023-02-17
Biström, Dennis, Westerlund, Magnus, Duncan, Bob, Jaatun, Martin Gilje.  2022.  Privacy and security challenges for autonomous agents : A study of two social humanoid service robots. 2022 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). :230–237.
The development of autonomous agents have gained renewed interest, largely due to the recent successes of machine learning. Social robots can be considered a special class of autonomous agents that are often intended to be integrated into sensitive environments. We present experiences from our work with two specific humanoid social service robots, and highlight how eschewing privacy and security by design principles leads to implementations with serious privacy and security flaws. The paper introduces the robots as platforms and their associated features, ecosystems and cloud platforms that are required for certain use cases or tasks. The paper encourages design aims for privacy and security, and then in this light studies the implementation from two different manufacturers. The results show a worrisome lack of design focus in handling privacy and security. The paper aims not to cover all the security flaws and possible mitigations, but does look closer into the use of the WebSocket protocol and it’s challenges when used for operational control. The conclusions of the paper provide insights on how manufacturers can rectify the discovered security flaws and presents key policies like accountability when it comes to implementing technical features of autonomous agents.
ISSN: 2330-2186
Morón, Paola Torrico, Salimi, Salma, Queralta, Jorge Peña, Westerlund, Tomi.  2022.  UWB Role Allocation with Distributed Ledger Technologies for Scalable Relative Localization in Multi-Robot Systems. 2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE). :1–8.
Systems for relative localization in multi-robot systems based on ultra-wideband (UWB) ranging have recently emerged as robust solutions for GNSS-denied environments. Scalability remains one of the key challenges, particularly in adhoc deployments. Recent solutions include dynamic allocation of active and passive localization modes for different robots or nodes in the system. with larger-scale systems becoming more distributed, key research questions arise in the areas of security and trustability of such localization systems. This paper studies the potential integration of collaborative-decision making processes with distributed ledger technologies. Specifically, we investigate the design and implementation of a methodology for running an UWB role allocation algorithm within smart contracts in a blockchain. In previous works, we have separately studied the integration of ROS2 with the Hyperledger Fabric blockchain, and introduced a new algorithm for scalable UWB-based localization. In this paper, we extend these works by (i) running experiments with larger number of mobile robots switching between different spatial configurations and (ii) integrating the dynamic UWB role allocation algorithm into Fabric smart contracts for distributed decision-making in a system of multiple mobile robots. This enables us to deliver the same functionality within a secure and trustable process, with enhanced identity and data access management. Our results show the effectiveness of the UWB role allocation for continuously varying spatial formations of six autonomous mobile robots, while demonstrating a low impact on latency and computational resources of adding the blockchain layer that does not affect the localization process.
Abduljabbar, Mohammed, Alnajjar, Fady.  2022.  Web Platform for General Robot Controlling system. 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :109–112.
AbuSaif is a human-like social robot designed and built at the UAE University's Artificial Intelligence and Robotics Lab. AbuSaif was initially operated by a classical personal computer (PC), like most of the existing social robots. Thus, most of the robot's functionalities are limited to the capacity of that mounted PC. To overcome this, in this study, we propose a web-based platform that shall take the benefits of clustering in cloud computing. Our proposed platform will increase the operational capability and functionality of AbuSaif, especially those needed to operate artificial intelligence algorithms. We believe that the robot will become more intelligent and autonomous using our proposed web platform.
Hannibal, Glenda, Dobrosovestnova, Anna, Weiss, Astrid.  2022.  Tolerating Untrustworthy Robots: Studying Human Vulnerability Experience within a Privacy Scenario for Trust in Robots. 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :821–828.
Focusing on human experience of vulnerability in everyday life interaction scenarios is still a novel approach. So far, only a proof-of-concept online study has been conducted, and to extend this work, we present a follow-up online study. We consider in more detail how human experience of vulnerability caused by a trust violation through a privacy breach affects trust ratings in an interaction scenario with the PEPPER robot assisting with clothes shopping. We report the results from 32 survey responses and 11 semi-structured interviews. Our findings reveal the existence of the privacy paradox also for studying trust in HRI, which is a common observation describing a discrepancy between the stated privacy concerns by people and their behavior to safeguard it. Moreover, we reflect that participants considered only the added value of utility and entertainment when deciding whether or not to interact with the robot again, but not the privacy breach. We conclude that people might tolerate an untrustworthy robot even when they are feeling vulnerable in the everyday life situation of clothes shopping.
ISSN: 1944-9437
2023-01-20
Kumar, T. Ch. Anil, Dixit, Ganesh Kumar, Singh, Rajesh, Narukullapati, Bharath Kumar, Chakravarthi, M. Kalyan, Gangodkar, Durgaprasad.  2022.  Wireless Sensor Network using Control Communication and Monitoring of Smart Grid. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1567—1570.
For some countries around the world, meeting demand is a serious concern. Power supply market is increasingly increasing, posing a big challenge for various countries throughout the world. The increasing expansion in the market for power needs upgrading system dependability to increase the smart grid's resilience. This smart electric grid has a sensor that analyses grid power availability and sends regular updates to the organisation. The internet is currently being utilized to monitor processes and place orders for running variables from faraway places. A large number of scanners have been used to activate electrical equipment for domestic robotics for a long period in the last several days. Conversely, if it is not correctly implemented, it will have a negative impact on cost-effectiveness as well as productivity. For something like a long time, home automation has relied on a large number of sensor nodes to control electrical equipment. Since there are so many detectors, this isn't cost-effective. In this article, develop and accept a wireless communication component and a management system suitable for managing independent efficient network units from voltage rises and voltage control technologies in simultaneous analyzing system reliability in this study. This research paper has considered secondary method to collect relevant and in-depth data related to the wireless sensor network and its usage in smart grid monitoring.
2022-12-09
Hussain, Karrar, Vanathi, D., Jose, Bibin K, Kavitha, S, Rane, Bhuvaneshwari Yogesh, Kaur, Harpreet, Sandhya, C..  2022.  Internet of Things- Cloud Security Automation Technology Based on Artificial Intelligence. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :42—47.
The development of industrial robots, as a carrier of artificial intelligence, has played an important role in promoting the popularisation of artificial intelligence super automation technology. The paper introduces the system structure, hardware structure, and software system of the mobile robot climber based on computer big data technology, based on this research background. At the same time, the paper focuses on the climber robot's mechanism compound method and obstacle avoidance control algorithm. Smart home computing focuses on “home” and brings together related peripheral industries to promote smart home services such as smart appliances, home entertainment, home health care, and security monitoring in order to create a safe, secure, energy-efficient, sustainable, and comfortable residential living environment. It's been twenty years. There is still no clear definition of “intelligence at home,” according to Philips Inc., a leading consumer electronics manufacturer, which once stated that intelligence should comprise sensing, connectedness, learning, adaption, and ease of interaction. S mart applications and services are still in the early stages of development, and not all of them can yet exhibit these five intelligent traits.
2022-12-06
Buzura, Sorin, Dadarlat, Vasile, Peculea, Adrian, Bertrand, Hugo, Chevalier, Raphaël.  2022.  Simulation Framework for 6LoWPAN Networks Using Mininet-WiFi. 2022 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). :1-5.

The Internet of Things (IoT) continuously grows as applications require connectivity and sensor networks are being deployed in multiple application domains. With the increased applicability demand, the need for testing and development frameworks also increases. This paper presents a novel simulation framework for testing IPv6 over Low Power Wireless Personal Networks (6LoWPAN) networks using the Mininet-WiFi simulator. The goal of the simulation framework is to allow easier automation testing of large-scale networks and to also allow easy configuration. This framework is a starting point for many development scenarios targeting traffic management, Quality of Service (QoS) or security network features. A basic smart city simulation is presented which demonstrates the working principles of the framework.

2022-06-09
Karim, Hassan, Rawat, Danda B..  2021.  Evaluating Machine Learning Classifiers for Data Sharing in Internet of Battlefield Things. 2021 IEEE Symposium Series on Computational Intelligence (SSCI). :01–07.
The most widely used method to prevent adversaries from eavesdropping on sensitive sensor, robot, and war fighter communications is mathematically strong cryptographic algorithms. However, prevailing cryptographic protocol mandates are often made without consideration of resource constraints of devices in the internet of Battlefield Things (IoBT). In this article, we address the challenges of IoBT sensor data exchange in contested environments. Battlefield IoT (Internet of Things) devices need to exchange data and receive feedback from other devices such as tanks and command and control infrastructure for analysis, tracking, and real-time engagement. Since data in IoBT systems may be massive or sparse, we introduced a machine learning classifier to determine what type of data to transmit under what conditions. We compared Support Vector Machine, Bayes Point Match, Boosted Decision Trees, Decision Forests, and Decision Jungles on their abilities to recommend the optimal confidentiality preserving data and transmission path considering dynamic threats. We created a synthesized dataset that simulates platoon maneuvers and IED detection components. We found Decision Jungles to produce the most accurate results while requiring the least resources during training to produce those results. We also introduced the JointField blockchain network for joint and allied force data sharing. With our classifier, strategists, and system designers will be able to enable adaptive responses to threats while engaged in real-time field conflict.
2022-02-03
Arafin, Md Tanvir, Kornegay, Kevin.  2021.  Attack Detection and Countermeasures for Autonomous Navigation. 2021 55th Annual Conference on Information Sciences and Systems (CISS). :1—6.
Advances in artificial intelligence, machine learning, and robotics have profoundly impacted the field of autonomous navigation and driving. However, sensor spoofing attacks can compromise critical components and the control mechanisms of mobile robots. Therefore, understanding vulnerabilities in autonomous driving and developing countermeasures remains imperative for the safety of unmanned vehicles. Hence, we demonstrate cross-validation techniques for detecting spoofing attacks on the sensor data in autonomous driving in this work. First, we discuss how visual and inertial odometry (VIO) algorithms can provide a root-of-trust during navigation. Then, we develop examples for sensor data spoofing attacks using the open-source driving dataset. Next, we design an attack detection technique using VIO algorithms that cross-validates the navigation parameters using the IMU and the visual data. Following, we consider hardware-dependent attack survival mechanisms that support an autonomous system during an attack. Finally, we also provide an example of spoofing survival technique using on-board hardware oscillators. Our work demonstrates the applicability of classical mobile robotics algorithms and hardware security primitives in defending autonomous vehicles from targeted cyber attacks.
Vijayasundara, S.M., Udayangani, N.K.S., Camillus, P.E., Jayatunga, E.H..  2021.  Security Robot for Real-time Monitoring and Capturing. 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS). :434—439.
Autonomous navigation of a robot is more challenging in an uncontrolled environment owing to the necessity of coordination among several activities. This includes, creating a map of the surrounding, localizing the robot inside the map, generating a motion plan consistent with the map, executing the plan with control and all other tasks involved concurrently. Moreover, autonomous navigation problems are significant for future robotics applications such as package delivery, security, cleaning, agriculture, surveillance, search and rescue, construction, and transportation which take place in uncontrolled environments. Therefore, an attempt has been made in this research to develop a robot which could function as a security agent for a house to address the aforesaid particulars. This robot has the capability to navigate autonomously in the prescribed map of the operating zone by the user. The desired map can be generated using a Light Detection and Ranging (LiDAR) sensor. For robot navigation, it requires to pick out the robot location accurately itself, otherwise robot will not move autonomously to a particular target. Therefore, Adaptive Monte Carlo Localization (AMCL) method was used to validate the accuracy of robot localization process. Moreover, additional sensors were placed around the building to sense the prevailing security threats from intruders with the aid of the robot.
2021-12-20
Zheng, Shengbao, Shu, Shaolong, Lin, Feng.  2021.  Modeling and Control of Discrete Event Systems under Joint Sensor-Actuator Cyber Attacks. 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE). :216–220.
In this paper, we investigate joint sensor-actuator cyber attacks in discrete event systems. We assume that attackers can attack some sensors and actuators at the same time by altering observations and control commands. Because of the nondeterminism in observation and control caused by cyber attacks, the behavior of the supervised systems becomes nondeterministic and deviates from the target. We define two bounds on languages, an upper-bound and a lower-bound, to describe the nondeterministic behavior. We then use the upper-bound language to investigate the safety supervisory control problem under cyber attacks. After introducing CA-controllability and CA-observability, we successfully solve the supervisory control problem under cyber attacks.
2021-11-08
He, Hongmei, Gray, John, Cangelosi, Angelo, Meng, Qinggang, McGinnity, T. M., Mehnen, Jörn.  2020.  The Challenges and Opportunities of Artificial Intelligence for Trustworthy Robots and Autonomous Systems. 2020 3rd International Conference on Intelligent Robotic and Control Engineering (IRCE). :68–74.
Trust is essential in designing autonomous and semiautonomous Robots and Autonomous Systems (RAS), because of the ``No trust, no use'' concept. RAS should provide high quality services, with four key properties that make them trustworthy: they must be (i) robust with regards to any system health related issues, (ii) safe for any matters in their surrounding environments, (iii) secure against any threats from cyber spaces, and (iv) trusted for human-machine interaction. This article thoroughly analyses the challenges in implementing the trustworthy RAS in respects of the four properties, and addresses the power of AI in improving the trustworthiness of RAS. While we focus on the benefits that AI brings to human, we should realize the potential risks that could be caused by AI. This article introduces for the first time the set of key aspects of human-centered AI for RAS, which can serve as a cornerstone for implementing trustworthy RAS by design in the future.
2021-09-16
Ambareen, Javeria, M, Prabhakar, Ara, Tabassum.  2020.  Edge Data Security for RFID-Based Devices. 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE). :272–277.
Radio-frequency identification (RFID) has become a preferred technology for monitoring in industrial internet of things (IIoT) applications like supply chain, medical industry, vehicle tracking and warehouse monitoring where information is required continually. Typical security threats seen in these applications are denial of service (DOS) attack, transmission attack etc. We propose a novel edge data security schema based on spike modulation along with backscatter communication technique to modulate both sensor and identification (ID) information. It is observed that this data encoding schema works well even in a multi-tag single-reader environment. Further, it uses lower power and offers a low-cost solution for Industrial IoT applications.
2021-06-02
Guerrero-Bonilla, Luis, Saldaña, David, Kumar, Vijay.  2020.  Dense r-robust formations on lattices. 2020 IEEE International Conference on Robotics and Automation (ICRA). :6633—6639.
Robot networks are susceptible to fail under the presence of malicious or defective robots. Resilient networks in the literature require high connectivity and large communication ranges, leading to high energy consumption in the communication network. This paper presents robot formations with guaranteed resiliency that use smaller communication ranges than previous results in the literature. The formations can be built on triangular and square lattices in the plane, and cubic lattices in the three-dimensional space. We support our theoretical framework with simulations.
2021-05-25
Dodson, Michael, Beresford, Alastair R., Richardson, Alexander, Clarke, Jessica, Watson, Robert N. M..  2020.  CHERI Macaroons: Efficient, host-based access control for cyber-physical systems. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :688–693.
Cyber-Physical Systems (CPS) often rely on network boundary defence as a primary means of access control; therefore, the compromise of one device threatens the security of all devices within the boundary. Resource and real-time constraints, tight hardware/software coupling, and decades-long service lifetimes complicate efforts for more robust, host-based access control mechanisms. Distributed capability systems provide opportunities for restoring access control to resource-owning devices; however, such a protection model requires a capability-based architecture for CPS devices as well as task compartmentalisation to be effective.This paper demonstrates hardware enforcement of network bearer tokens using an efficient translation between CHERI (Capability Hardware Enhanced RISC Instructions) architectural capabilities and Macaroon network tokens. While this method appears to generalise to any network-based access control problem, we specifically consider CPS, as our method is well-suited for controlling resources in the physical domain. We demonstrate the method in a distributed robotics application and in a hierarchical industrial control application, and discuss our plans to evaluate and extend the method.
2020-12-17
Zong, Y., Guo, Y., Chen, X..  2019.  Policy-Based Access Control for Robotic Applications. 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE). :368—3685.

With the wide application of modern robots, more concerns have been raised on security and privacy of robotic systems and applications. Although the Robot Operating System (ROS) is commonly used on different robots, there have been few work considering the security aspects of ROS. As ROS does not employ even the basic permission control mechanism, applications can access any resources without limitation, which could result in equipment damage, harm to human, as well as privacy leakage. In this paper we propose an access control mechanism for ROS based on an extended policy-based access control (PBAC) model. Specifically, we extend ROS to add an additional node dedicated for access control so that it can provide user identity and permission management services. The proposed mechanism also allows the administrator to revoke a permission dynamically. We implemented the proposed method in ROS and demonstrated its applicability and performance through several case studies.

Wehbe, R., Williams, R. K..  2019.  Approximate Probabilistic Security for Networked Multi-Robot Systems. 2019 International Conference on Robotics and Automation (ICRA). :1997—2003.

In this paper, we formulate a combinatorial optimization problem that aims to maximize the accuracy of a lower bound estimate of the probability of security of a multi-robot system (MRS), while minimizing the computational complexity involved in its calculation. Security of an MRS is defined using the well-known control theoretic notion of left invertiblility, and the probability of security of an MRS can be calculated using binary decision diagrams (BDDs). The complexity of a BDD depends on the number of disjoint path sets considered during its construction. Taking into account all possible disjoint paths results in an exact probability of security, however, selecting an optimal subset of disjoint paths leads to a good estimate of the probability while significantly reducing computation. To deal with the dynamic nature of MRSs, we introduce two methods: (1) multi-point optimization, a technique that requires some a priori knowledge of the topology of the MRS over time, and (2) online optimization, a technique that does not require a priori knowledge, but must construct BDDs while the MRS is operating. Finally, our approach is validated on an MRS performing a rendezvous objective while exchanging information according to a noisy state agreement process.

Basan, E., Gritsynin, A., Avdeenko, T..  2019.  Framework for Analyzing the Security of Robot Control Systems. 2019 International Conference on Information Systems and Computer Science (INCISCOS). :354—360.

The purpose of this work is to analyze the security model of a robotized system, to analyze the approaches to assessing the security of this system, and to develop our own framework. The solution to this problem involves the use of developed frameworks. The analysis will be conducted on a robotic system of robots. The prefix structures assume that the robotic system is divided into levels, and after that it is necessary to directly protect each level. Each level has its own characteristics and drawbacks that must be considered when developing a security system for a robotic system.

Abeykoon, I., Feng, X..  2019.  Challenges in ROS Forensics. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1677—1682.

The usage of robot is rapidly growth in our society. The communication link and applications connect the robots to their clients or users. This communication link and applications are normally connected through some kind of network connections. This network system is amenable of being attached and vulnerable to the security threats. It is a critical part for ensuring security and privacy for robotic platforms. The paper, also discusses about several cyber-physical security threats that are only for robotic platforms. The peer to peer applications use in the robotic platforms for threats target integrity, availability and confidential security purposes. A Remote Administration Tool (RAT) was introduced for specific security attacks. An impact oriented process was performed for analyzing the assessment outcomes of the attacks. Tests and experiments of attacks were performed in simulation environment which was based on Gazbo Turtlebot simulator and physically on the robot. A software tool was used for simulating, debugging and experimenting on ROS platform. Integrity attacks performed for modifying commands and manipulated the robot behavior. Availability attacks were affected for Denial-of-Service (DoS) and the robot was not listened to Turtlebot commands. Integrity and availability attacks resulted sensitive information on the robot.

Basheer, M. M., Varol, A..  2019.  An Overview of Robot Operating System Forensics. 2019 1st International Informatics and Software Engineering Conference (UBMYK). :1—4.
Autonomous technologies have been rapidly replacing the traditional manual intervention nearly in every aspect of our life. These technologies essentially require robots to carry out their automated processes. Nowadays, with the emergence of industry 4.0, robots are increasingly being remote-controlled via client-server connection, which creates uncommon vulnerabilities that allow attackers to target those robots. The development of an open source operational environment for robots, known as Robot Operating System (ROS) has come as a response to these demands. Security and privacy are crucial for the use of ROS as the chance of a compromise may lead to devastating ramifications. In this paper, an overview of ROS and the attacks targeting it are detailed and discussed. Followed by a review of the ROS security and digital investigation studies.
2020-12-15
Reardon, C., Lee, K., Fink, J..  2018.  Come See This! Augmented Reality to Enable Human-Robot Cooperative Search. 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :1—7.

Robots operating alongside humans in field environments have the potential to greatly increase the situational awareness of their human teammates. A significant challenge, however, is the efficient conveyance of what the robot perceives to the human in order to achieve improved situational awareness. We believe augmented reality (AR), which allows a human to simultaneously perceive the real world and digital information situated virtually in the real world, has the potential to address this issue. Motivated by the emerging prevalence of practical human-wearable AR devices, we present a system that enables a robot to perform cooperative search with a human teammate, where the robot can both share search results and assist the human teammate in navigation to the search target. We demonstrate this ability in a search task in an uninstrumented environment where the robot identifies and localizes targets and provides navigation direction via AR to bring the human to the correct target.

Nasser, B., Rabani, A., Freiling, D., Gan, C..  2018.  An Adaptive Telerobotics Control for Advanced Manufacturing. 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). :82—89.
This paper explores an innovative approach to the telerobotics reasoning architecture and networking, which offer a reliable and adaptable operational process for complex tasks. There are many operational challenges in the remote control for manufacturing that can be introduced by the network communications and Iatency. A new protocol, named compact Reliable UDP (compact-RUDP), has been developed to combine both data channelling and media streaming for robot teleoperation. The original approach ensures connection reliability by implementing a TCP-like sliding window with UDP packets. The protocol provides multiple features including data security, link status monitoring, bandwidth control, asynchronous file transfer and prioritizing transfer of data packets. Experiments were conducted on a 5DOF robotic arm where a cutting tool was mounted at its distal end. A light sensor was used to guide the robot movements, and a camera device to provide a video stream of the operation. The data communication reliability is evaluated using Round-Trip Time (RTT), and advanced robot path planning for distributed decision making between endpoints. The results show 88% correlation between the remotely and locally operated robots. The file transfers and video streaming were performed with no data loss or corruption on the control commands and data feedback packets.