Biblio
Filters: Keyword is composability [Clear All Filters]
Novel Analytical Models for Sybil Attack Detection in IPv6-based RPL Wireless IoT Networks. 2022 IEEE International Conference on Consumer Electronics (ICCE). :1–3.
.
2022. Metaverse technologies depend on various advanced human-computer interaction (HCI) devices to be supported by extended reality (XR) technology. Many new HCI devices are supported by wireless Internet of Things (IoT) networks, where a reliable routing scheme is essential for seamless data trans-mission. Routing Protocol for Low power and Lossy networks (RPL) is a key routing technology used in IPv6-based low power and lossy networks (LLNs). However, in the networks that are configured, such as small wireless devices applying the IEEE 802.15.4 standards, due to the lack of a system that manages the identity (ID) at the center, the maliciously compromised nodes can make fabricated IDs and pretend to be a legitimate node. This behavior is called Sybil attack, which is very difficult to respond to since attackers use multiple fabricated IDs which are legally disguised. In this paper, Sybil attack countermeasures on RPL-based networks published in recent studies are compared and limitations are analyzed through simulation performance analysis.
Design of an Advance Intrusion Detection System for IoT Networks. 2022 2nd International Conference on Artificial Intelligence (ICAI). :46–51.
.
2022. The Internet of Things (IoT) is advancing technology by creating smart surroundings that make it easier for humans to do their work. This technological advancement not only improves human life and expands economic opportunities, but also allows intruders or attackers to discover and exploit numerous methods in order to circumvent the security of IoT networks. Hence, security and privacy are the key concerns to the IoT networks. It is vital to protect computer and IoT networks from many sorts of anomalies and attacks. Traditional intrusion detection systems (IDS) collect and employ large amounts of data with irrelevant and inappropriate attributes to train machine learning models, resulting in long detection times and a high rate of misclassification. This research presents an advance approach for the design of IDS for IoT networks based on the Particle Swarm Optimization Algorithm (PSO) for feature selection and the Extreme Gradient Boosting (XGB) model for PSO fitness function. The classifier utilized in the intrusion detection process is Random Forest (RF). The IoTID20 is being utilized to evaluate the efficacy and robustness of our suggested strategy. The proposed system attains the following level of accuracy on the IoTID20 dataset for different levels of classification: Binary classification 98 %, multiclass classification 83 %. The results indicate that the proposed framework effectively detects cyber threats and improves the security of IoT networks.
Edge Computing and UAV Swarm Cooperative Task Offloading in Vehicular Networks. 2022 International Wireless Communications and Mobile Computing (IWCMC). :955–960.
.
2022. Recently, unmanned aerial vehicle (UAV) swarm has been advocated to provide diverse data-centric services including data relay, content caching and computing task offloading in vehicular networks due to their flexibility and conveniences. Since only offloading computing tasks to edge computing devices (ECDs) can not meet the real-time demand of vehicles in peak traffic flow, this paper proposes to combine edge computing and UAV swarm for cooperative task offloading in vehicular networks. Specifically, we first design a cooperative task offloading framework that vehicles' computing tasks can be executed locally, offloaded to UAV swarm, or offloaded to ECDs. Then, the selection of offloading strategy is formulated as a mixed integer nonlinear programming problem, the object of which is to maximize the utility of the vehicle. To solve the problem, we further decompose the original problem into two subproblems: minimizing the completion time when offloading to UAV swarm and optimizing the computing resources when offloading to ECD. For offloading to UAV swarm, the computing task will be split into multiple subtasks that are offloaded to different UAVs simultaneously for parallel computing. A Q-learning based iterative algorithm is proposed to minimize the computing task's completion time by equalizing the completion time of its subtasks assigned to each UAV. For offloading to ECDs, a gradient descent algorithm is used to optimally allocate computing resources for offloaded tasks. Extensive simulations are lastly conducted to demonstrate that the proposed scheme can significantly improve the utility of vehicles compared with conventional schemes.
Swarm Intelligence Approach for Feature Selection Problem. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
.
2022. Classification problems have been part of numerous real-life applications in fields of security, medicine, agriculture, and more. Due to the wide range of applications, there is a constant need for more accurate and efficient methods. Besides more efficient and better classification algorithms, the optimal feature set is a significant factor for better classification accuracy. In general, more features can better describe instances, but besides showing differences between instances of different classes, it can also capture many similarities that lead to wrong classification. Determining the optimal feature set can be considered a hard optimization problem for which different metaheuristics, like swarm intelligence algorithms can be used. In this paper, we propose an adaptation of hybridized swarm intelligence (SI) algorithm for feature selection problem. To test the quality of the proposed method, classification was done by k-means algorithm and it was tested on 17 benchmark datasets from the UCI repository. The results are compared to similar approaches from the literature where SI algorithms were used for feature selection, which proves the quality of the proposed hybridized SI method. The proposed method achieved better classification accuracy for 16 datasets. Higher classification accuracy was achieved while simultaneously reducing the number of used features.
Multi-objective Gray Wolf Optimization Algorithm for Multi-agent Pathfinding Problem. 2022 IEEE 5th International Conference on Electronics Technology (ICET). :1241–1249.
.
2022. As a core problem of multi-agent systems, multiagent pathfinding has an important impact on the efficiency of multi-agent systems. Because of this, many novel multi-agent pathfinding methods have been proposed over the years. However, these methods have focused on different agents with different goals for research, and less research has been done on scenarios where different agents have the same goal. We propose a multiagent pathfinding method incorporating a multi-objective gray wolf optimization algorithm to solve the multi-agent pathfinding problem with the same objective. First, constrained optimization modeling is performed to obtain objective functions about agent wholeness and security. Then, the multi-objective gray wolf optimization algorithm is improved for solving the constrained optimization problem and further optimized for scenarios with insufficient computational resources. To verify the effectiveness of the multi-objective gray wolf optimization algorithm, we conduct experiments in a series of simulation environments and compare the improved multi-objective grey wolf optimization algorithm with some classical swarm intelligence optimization algorithms. The results show that the multi-agent pathfinding method incorporating the multi-objective gray wolf optimization algorithm is more efficient in handling multi-agent pathfinding problems with the same objective.
Efficient Distributed Consensus Algorithm For Swarm Robotic. 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). :1–6.
.
2022. Swarm robotics is a network based multi-device system designed to achieve shared objectives in a synchronized way. This system is widely used in industries like farming, manufacturing, and defense applications. In recent implementations, swarm robotics is integrated with Blockchain based networks to enhance communication, security, and decentralized decision-making capabilities. As most of the current blockchain applications are based on complex consensus algorithms, every individual robot in the swarm network requires high computing power to run these complex algorithms. Thus, it is a challenging task to achieve consensus between the robots in the network. This paper will discuss the details of designing an effective consensus algorithm that meets the requirements of swarm robotics network.
DNN aided PSO based-scheme for a Secure Energy Efficiency Maximization in a cooperative NOMA system with a non-linear EH. 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN). :155–160.
.
2022. Physical layer security is an emerging security area to tackle wireless security communications issues and complement conventional encryption-based techniques. Thus, we propose a novel scheme based on swarm intelligence optimization technique and a deep neural network (DNN) for maximizing the secrecy energy efficiency (SEE) in a cooperative relaying underlay cognitive radio- and non-orthogonal multiple access (NOMA) system with a non-linear energy harvesting user which is exposed to multiple eavesdroppers. Satisfactorily, simulation results show that the proposed particle swarm optimization (PSO)-DNN framework achieves close performance to that of the optimal solutions, with a meaningful reduction in computation complexity.
X-Swarm: Adversarial DRL for Metamorphic Malware Swarm Generation. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :169–174.
.
2022. Advanced metamorphic malware and ransomware use techniques like obfuscation to alter their internal structure with every attack. Therefore, any signature extracted from such attack, and used to bolster endpoint defense, cannot avert subsequent attacks. Therefore, if even a single such malware intrudes even a single device of an IoT network, it will continue to infect the entire network. Scenarios where an entire network is targeted by a coordinated swarm of such malware is not beyond imagination. Therefore, the IoT era also requires Industry-4.0 grade AI-based solutions against such advanced attacks. But AI-based solutions need a large repository of data extracted from similar attacks to learn robust representations. Whereas, developing a metamorphic malware is a very complex task and requires extreme human ingenuity. Hence, there does not exist abundant metamorphic malware to train AI-based defensive solutions. Also, there is currently no system that could generate enough functionality preserving metamorphic variants of multiple malware to train AI-based defensive systems. Therefore, to this end, we design and develop a novel system, named X-Swarm. X-Swarm uses deep policy-based adversarial reinforcement learning to generate swarm of metamorphic instances of any malware by obfuscating them at the opcode level and ensuring that they could evade even capable, adversarial-attack immune endpoint defense systems.
Feature Selection by Improved Sand Cat Swarm Optimizer for Intrusion Detection. 2022 International Conference on Artificial Intelligence in Everything (AIE). :685–690.
.
2022. The rapid growth of number of devices that are connected to internet of things (IoT) networks, increases the severity of security problems that need to be solved in order to provide safe environment for network data exchange. The discovery of new vulnerabilities is everyday challenge for security experts and many novel methods for detection and prevention of intrusions are being developed for dealing with this issue. To overcome these shortcomings, artificial intelligence (AI) can be used in development of advanced intrusion detection systems (IDS). This allows such system to adapt to emerging threats, react in real-time and adjust its behavior based on previous experiences. On the other hand, the traffic classification task becomes more difficult because of the large amount of data generated by network systems and high processing demands. For this reason, feature selection (FS) process is applied to reduce data complexity by removing less relevant data for the active classification task and therefore improving algorithm's accuracy. In this work, hybrid version of recently proposed sand cat swarm optimizer algorithm is proposed for feature selection with the goal of increasing performance of extreme learning machine classifier. The performance improvements are demonstrated by validating the proposed method on two well-known datasets - UNSW-NB15 and CICIDS-2017, and comparing the results with those reported for other cutting-edge algorithms that are dealing with the same problems and work in a similar configuration.
Data Based Identification of Byzantine Robots for Collective Decision Making. 2022 13th Asian Control Conference (ASCC). :1724–1727.
.
2022. The development of new types of technology actualizes the issues of ensuring their information security. The aim of the work is to increase the security of the collective decision-making process in swarm robotic systems from negative impacts by identifying malicious robots. It is proposed to use confidence in choosing an alternative when reaching a consensus as a criterion for identifying malicious robots - a malicious robot, having a special behavior strategy, does not fully take into account the signs of the external environment and information from other robots, which means that such a robot will change its mind with characteristic features for each malicious strategy, and its degree of confidence will be different from the usual voting robot. The modeling performed and the obtained experimental data on three types of malicious behavioral strategies demonstrate the possibility of using the degree of confidence to identify malicious robots. The advantages of the approach are taking into account a large number of alternatives and universality, which lies in the fact that the method is based on the mechanisms of collective decision-making, which proceed in the same way on various hardware platforms of swarm robotic systems. The proposed method can serve as a basis for the development of more complex security mechanisms in swarm robotic systems.
Swarm Intelligence applied to SQL Injection. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
.
2022. The Open Web Application Security Project (OWASP) (a non-profit foundation that works to improve computer security) considered, in 2021, injection as one of the biggest risks in web applications. SQL injection despite being a vulnerability easily avoided has a great insurgency in web applications, and its impact is quite nefarious. To identify and exploit vulnerabilities in a system, algorithms based on Swarm Intelligence (SI) can be used. This article proposes and describes a new approach that uses SI and attack vectors to identify Structured Query Language (SQL) Injection vulnerabilities. The results obtained show the efficiency of the proposed approach.
Feature-based Intrusion Detection System with Support Vector Machine. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1—7.
.
2022. Today billions of people are accessing the internet around the world. There is a need for new technology to provide security against malicious activities that can take preventive/ defensive actions against constantly evolving attacks. A new generation of technology that keeps an eye on such activities and responds intelligently to them is the intrusion detection system employing machine learning. It is difficult for traditional techniques to analyze network generated data due to nature, amount, and speed with which the data is generated. The evolution of advanced cyber threats makes it difficult for existing IDS to perform up to the mark. In addition, managing large volumes of data is beyond the capabilities of computer hardware and software. This data is not only vast in scope, but it is also moving quickly. The system architecture suggested in this study uses SVM to train the model and feature selection based on the information gain ratio measure ranking approach to boost the overall system's efficiency and increase the attack detection rate. This work also addresses the issue of false alarms and trying to reduce them. In the proposed framework, the UNSW-NB15 dataset is used. For analysis, the UNSW-NB15 and NSL-KDD datasets are used. Along with SVM, we have also trained various models using Naive Bayes, ANN, RF, etc. We have compared the result of various models. Also, we can extend these trained models to create an ensemble approach to improve the performance of IDS.
Fault detection and localization based on Decision Tree and Support vector machine algorithms in electrical power transmission network. 2022 2nd International Conference on Advanced Electrical Engineering (ICAEE). :1—6.
.
2022. This paper introduces an application of machine learning algorithms. In fact, support vector machine and decision tree approaches are studied and applied to compare their performances in detecting, classifying, and locating faults in the transmission network. The IEEE 14-bus transmission network is considered in this work. Besides, 13 types of faults are tested. Particularly, the one fault and the multiple fault cases are investigated and tested separately. Fault simulations are performed using the SimPowerSystems toolbox in Matlab. Basing on the accuracy score, a comparison is made between the proposed approaches while testing simple faults, on the one hand, and when complicated faults are integrated, on the other hand. Simulation results prove that the support vector machine technique can achieve an accuracy of 87% compared to the decision tree which had an accuracy of 53% in complicated cases.
Comparative Study of Machine Learning Techniques for Intrusion Detection Systems. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:274—283.
.
2022. Being a part of today’s technical world, we are connected through a vast network. More we are addicted to these modernization techniques we need security. There must be reliability in a network security system so that it is capable of doing perfect monitoring of the whole network of an organization so that any unauthorized users or intruders wouldn’t be able to halt our security breaches. Firewalls are there for securing our internal network from unauthorized outsiders but still some time possibility of attacks is there as according to a survey 60% of attacks were internal to the network. So, the internal system needs the same higher level of security just like external. So, understanding the value of security measures with accuracy, efficiency, and speed we got to focus on implementing and comparing an improved intrusion detection system. A comprehensive literature review has been done and found that some feature selection techniques with standard scaling combined with Machine Learning Techniques can give better results over normal existing ML Techniques. In this survey paper with the help of the Uni-variate Feature selection method, the selection of 14 essential features out of 41 is performed which are used in comparative analysis. We implemented and compared both binary class classification and multi-class classification-based Intrusion Detection Systems (IDS) for two Supervised Machine Learning Techniques Support Vector Machine and Classification and Regression Techniques.
Comparative Analysis Of Crime Hotspot Detection And Prediction Using Convolutional Neural Network Over Support Vector Machine with Engineered Spatial Features Towards Increase in Classifier Accuracy. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—5.
.
2022. The major aim of the study is to predict the type of crime that is going to happen based on the crime hotspot detected for the given crime data with engineered spatial features. crime dataset is filtered to have the following 2 crime categories: crime against society, crime against person. Crime hotspots are detected by using the Novel Hierarchical density based Spatial Clustering of Application with Noise (HDBSCAN) Algorithm with the number of clusters optimized using silhouette score. The sample data consists of 501 crime incidents. Future types of crime for the given location are predicted by using the Support Vector Machine (SVM) and Convolutional Neural Network (CNN) algorithms (N=5). The accuracy of crime prediction using Support Vector Machine classification algorithm is 94.01% and Convolutional Neural Network algorithm is 79.98% with the significance p-value of 0.033. The Support Vector Machine algorithm is significantly better in accuracy for prediction of type of crime than Convolutional Neural Network (CNN).
Speech Emotion Recognition Using Bagged Support Vector Machines. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1—4.
.
2022. Speech emotion popularity is one of the quite promising and thrilling issues in the area of human computer interaction. It has been studied and analysed over several decades. It’s miles the technique of classifying or identifying emotions embedded inside the speech signal.Current challenges related to the speech emotion recognition when a single estimator is used is difficult to build and train using HMM and neural networks,Low detection accuracy,High computational power and time.In this work we executed emotion category on corpora — the berlin emodb, and the ryerson audio-visible database of emotional speech and track (Ravdess). A mixture of spectral capabilities was extracted from them which changed into further processed and reduced to the specified function set. When compared to single estimators, ensemble learning has been shown to provide superior overall performance. We endorse a bagged ensemble model which consist of support vector machines with a gaussian kernel as a possible set of rules for the hassle handy. Inside the paper, ensemble studying algorithms constitute a dominant and state-of-the-art approach for acquiring maximum overall performance.
Predicting Distributed Denial of Service Attacks in Machine Learning Field. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :594—597.
.
2022. A persistent and serious danger to the Internet is a denial of service attack on a large scale (DDoS) attack using machine learning. Because they originate at the low layers, new Infections that use genuine hypertext transfer protocol requests to overload target resources are more untraceable than application layer-based cyberattacks. Using network flow traces to construct an access matrix, this research presents a method for detecting distributed denial of service attack machine learning assaults. Independent component analysis decreases the number of attributes utilized in detection because it is multidimensional. Independent component analysis can be used to translate features into high dimensions and then locate feature subsets. Furthermore, during the training and testing phase of the updated source support vector machine for classification, their performance it is possible to keep track of the detection rate and false alarms. Modified source support vector machine is popular for pattern classification because it produces good results when compared to other approaches, and it outperforms other methods in testing even when given less information about the dataset. To increase classification rate, modified source support Vector machine is used, which is optimized using BAT and the modified Cuckoo Search method. When compared to standard classifiers, the acquired findings indicate better performance.
An Innovative Method in Classifying and predicting the accuracy of intrusion detection on cybercrime by comparing Decision Tree with Support Vector Machine. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—6.
.
2022. Classifying and predicting the accuracy of intrusion detection on cybercrime by comparing machine learning methods such as Innovative Decision Tree (DT) with Support Vector Machine (SVM). By comparing the Decision Tree (N=20) and the Support Vector Machine algorithm (N=20) two classes of machine learning classifiers were used to determine the accuracy. The decision Tree (99.19%) has the highest accuracy than the SVM (98.5615%) and the independent T-test was carried out (=.507) and shows that it is statistically insignificant (p\textgreater0.05) with a confidence value of 95%. by comparing Innovative Decision Tree and Support Vector Machine. The Decision Tree is more productive than the Support Vector Machine for recognizing intruders with substantially checked, according to the significant analysis.
Research on GIS Isolating Switch Mechanical Fault Diagnosis based on Cross-Validation Parameter Optimization Support Vector Machine. 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). :1—4.
.
2022. GIS equipment is an important component of power system, and mechanical failure often occurs in the process of equipment operation. In order to realize GIS equipment mechanical fault intelligent detection, this paper presents a mechanical fault diagnosis model for GIS equipment based on cross-validation parameter optimization support vector machine (CV-SVM). Firstly, vibration experiment of isolating switch was carried out based on true 110 kV GIS vibration simulation experiment platform. Vibration signals were sampled under three conditions: normal, plum finger angle change fault, plum finger abrasion fault. Then, the c and G parameters of SVM are optimized by cross validation method and grid search method. A CV-SVM model for mechanical fault diagnosis was established. Finally, training and verification are carried out by using the training set and test set models in different states. The results show that the optimization of cross-validation parameters can effectively improve the accuracy of SVM classification model. It can realize the accurate identification of GIS equipment mechanical fault. This method has higher diagnostic efficiency and performance stability than traditional machine learning. This study can provide reference for on-line monitoring and intelligent fault diagnosis analysis of GIS equipment mechanical vibration.
An Innovative Method in Improving the accuracy in Intrusion detection by comparing Random Forest over Support Vector Machine. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—6.
.
2022. Improving the accuracy of intruders in innovative Intrusion detection by comparing Machine Learning classifiers such as Random Forest (RF) with Support Vector Machine (SVM). Two groups of supervised Machine Learning algorithms acquire perfection by looking at the Random Forest calculation (N=20) with the Support Vector Machine calculation (N=20)G power value is 0.8. Random Forest (99.3198%) has the highest accuracy than the SVM (9S.56l5%) and the independent T-test was carried out (=0.507) and shows that it is statistically insignificant (p \textgreater0.05) with a confidence value of 95% by comparing RF and SVM. Conclusion: The comparative examination displays that the Random Forest is more productive than the Support Vector Machine for identifying the intruders are significantly tested.
Research and Design of Network Information Security Attack and Defense Practical Training Platform based on ThinkPHP Framework. 2022 2nd Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS). :27—31.
.
2022. To solve the current problem of scarce information security talents, this paper proposes to design a network information security attack and defense practical training platform based on ThinkPHP framework. It provides help for areas with limited resources and also offers a communication platform for the majority of information security enthusiasts and students. The platform is deployed using ThinkPHP, and in order to meet the personalized needs of the majority of users, support vector machine algorithms are added to the platform to provide a more convenient service for users.
Difficult for Thee, But Not for Me: Measuring the Difficulty and User Experience of Remediating Persistent IoT Malware. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :392–409.
.
2022. Consumer IoT devices may suffer malware attacks, and be recruited into botnets or worse. There is evidence that generic advice to device owners to address IoT malware can be successful, but this does not account for emerging forms of persistent IoT malware. Less is known about persistent malware, which resides on persistent storage, requiring targeted manual effort to remove it. This paper presents a field study on the removal of persistent IoT malware by consumers. We partnered with an ISP to contrast remediation times of 760 customers across three malware categories: Windows malware, non-persistent IoT malware, and persistent IoT malware. We also contacted ISP customers identified as having persistent IoT malware on their network-attached storage devices, specifically QSnatch. We found that persistent IoT malware exhibits a mean infection duration many times higher than Windows or Mirai malware; QSnatch has a survival probability of 30% after 180 days, whereby most if not all other observed malware types have been removed. For interviewed device users, QSnatch infections lasted longer, so are apparently more difficult to get rid of, yet participants did not report experiencing difficulty in following notification instructions. We see two factors driving this paradoxical finding: First, most users reported having high technical competency. Also, we found evidence of planning behavior for these tasks and the need for multiple notifications. Our findings demonstrate the critical nature of interventions from outside for persistent malware, since automatic scan of an AV tool or a power cycle, like we are used to for Windows malware and Mirai infections, will not solve persistent IoT malware infections.
Configuration vulnerability in SNORT for Windows Operating Systems. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :82–89.
.
2022. Cyber-attacks against Industrial Control Systems (ICS) can lead to catastrophic events which can be prevented by the use of security measures such as the Intrusion Prevention Systems (IPS). In this work we experimentally demonstrate how to exploit the configuration vulnerabilities of SNORT one of the most adopted IPSs to significantly degrade the effectiveness of the IPS and consequently allowing successful cyber-attacks. We illustrate how to design a batch script able to retrieve and modify the configuration files of SNORT in order to disable its ability to detect and block Denial of Service (DoS) and ARP poisoning-based Man-In-The-Middle (MITM) attacks against a Programmable Logic Controller (PLC) in an ICS network. Experimental tests performed on a water distribution testbed show that, despite the presence of IPS, the DoS and ARP spoofed packets reach the destination causing respectively the disconnection of the PLC from the ICS network and the modification of packets payload.
Detecting and Classifying Self-Deleting Windows Malware Using Prefetch Files. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0745–0751.
.
2022. Malware detection and analysis can be a burdensome task for incident responders. As such, research has turned to machine learning to automate malware detection and malware family classification. Existing work extracts and engineers static and dynamic features from the malware sample to train classifiers. Despite promising results, such techniques assume that the analyst has access to the malware executable file. Self-deleting malware invalidates this assumption and requires analysts to find forensic evidence of malware execution for further analysis. In this paper, we present and evaluate an approach to detecting malware that executed on a Windows target and further classify the malware into its associated family to provide semantic insight. Specifically, we engineer features from the Windows prefetch file, a file system forensic artifact that archives process information. Results show that it is possible to detect the malicious artifact with 99% accuracy; furthermore, classifying the malware into a fine-grained family has comparable performance to techniques that require access to the original executable. We also provide a thorough security discussion of the proposed approach against adversarial diversity.
The Application of 1D-CNN in Microsoft Malware Detection. 2022 7th International Conference on Big Data Analytics (ICBDA). :181–187.
.
2022. In the computer field, cybersecurity has always been the focus of attention. How to detect malware is one of the focuses and difficulties in network security research effectively. Traditional existing malware detection schemes can be mainly divided into two methods categories: database matching and the machine learning method. With the rise of deep learning, more and more deep learning methods are applied in the field of malware detection. Deeper semantic features can be extracted via deep neural network. The main tasks of this paper are as follows: (1) Using machine learning methods and one-dimensional convolutional neural networks to detect malware (2) Propose a machine The method of combining learning and deep learning is used for detection. Machine learning uses LGBM to obtain an accuracy rate of 67.16%, and one-dimensional CNN obtains an accuracy rate of 72.47%. In (2), LGBM is used to screen the importance of features and then use a one-dimensional convolutional neural network, which helps to further improve the detection result has an accuracy rate of 78.64%.