Biblio
With the electric power distribution grid facing ever increasing complexity and new threats from cyber-attacks, situational awareness for system operators is quickly becoming indispensable. Identifying de-energized lines on the distribution system during a SCADA communication failure is a prime example where operators need to act quickly to deal with an emergent loss of service. Loss of cellular towers, poor signal strength, and even cyber-attacks can impact SCADA visibility of line devices on the distribution system. Neural Networks (NNs) provide a unique approach to learn the characteristics of normal system behavior, identify when abnormal conditions occur, and flag these conditions for system operators. This study applies a 24-hour load forecast for distribution line devices given the weather forecast and day of the week, then determines the current state of distribution devices based on changes in SCADA analogs from communicating line devices. A neural network-based algorithm is applied to historical events on Alabama Power's distribution system to identify de-energized sections of line when a significant amount of SCADA information is hidden.
The features of socio-cyber-physical systems are presented, which dictate the need to revise traditional management methods and transform the management system in such a way that it takes into account the presence of a person both in the control object and in the control loop. The use of situational control mechanisms is proposed. The features of this approach and its comparison with existing methods of situational awareness are presented. The comparison has demonstrated wider possibilities and scope for managing socio-cyber-physical systems. It is recommended to consider a wider class of types of relations that exist in socio-cyber-physical systems. It is indicated that such consideration can be based on the use of pseudo-physical logics considered in situational control. It is pointed out that it is necessary to design a classifier of situations (primarily in cyberspace), instead of traditional classifiers of threats and intruders.
Control room video surveillance is an important source of information for ensuring public safety. To facilitate the process, a Decision-Support System (DSS) designed for the security task force is vital and necessary to take decisions rapidly using a sea of information. In case of mission critical operation, Situational Awareness (SA) which consists of knowing what is going on around you at any given time plays a crucial role across a variety of industries and should be placed at the center of our DSS. In our approach, SA system will take advantage of the human factor thanks to the reinforcement signal whereas previous work on this field focus on improving knowledge level of DSS at first and then, uses the human factor only for decision-making. In this paper, we propose a situational awareness-centric decision-support system framework for mission-critical operations driven by Quality of Experience (QoE). Our idea is inspired by the reinforcement learning feedback process which updates the environment understanding of our DSS. The feedback is injected by a QoE built on user perception. Our approach will allow our DSS to evolve according to the context with an up-to-date SA.
Real-time situational awareness (SA) plays an essential role in accurate and timely incident response. Maintaining SA is, however, extremely costly due to excessive false alerts generated by intrusion detection systems, which require prioritization and manual investigation by security analysts. In this paper, we propose a novel approach to prioritizing alerts so as to maximize SA, by formulating the problem as that of active learning in a hidden Markov model (HMM). We propose to use the entropy of the belief of the security state as a proxy for the mean squared error (MSE) of the belief, and we develop two computationally tractable policies for choosing alerts to investigate that minimize the entropy, taking into account the potential uncertainty of the investigations' results. We use simulations to compare our policies to a variety of baseline policies. We find that our policies reduce the MSE of the belief of the security state by up to 50% compared to static baseline policies, and they are robust to high false alert rates and to the investigation errors.
According to the characteristics of security threats and massive users in power mobile applications, a mobile application security situational awareness method based on big data architecture is proposed. The method uses open-source big data technology frameworks such as Kafka, Flink, Elasticsearch, etc. to complete the collection, analysis, storage and visual display of massive power mobile application data, and improve the throughput of data processing. The security situation awareness method of power mobile application takes the mobile terminal threat index as the core, divides the risk level for the mobile terminal, and predicts the terminal threat index through support vector machine regression algorithm (SVR), so as to construct the security profile of the mobile application operation terminal. Finally, through visualization services, various data such as power mobile applications and terminal assets, security operation statistics, security strategies, and alarm analysis are displayed to guide security operation and maintenance personnel to carry out power mobile application security monitoring and early warning, banning disposal and traceability analysis and other decision-making work. The experimental analysis results show that the method can meet the requirements of security situation awareness for threat assessment accuracy and response speed, and the related results have been well applied in a power company.
This paper introduces lronMask, a new versatile verification tool for masking security. lronMask is the first to offer the verification of standard simulation-based security notions in the probing model as well as recent composition and expandability notions in the random probing model. It supports any masking gadgets with linear randomness (e.g. addition, copy and refresh gadgets) as well as quadratic gadgets (e.g. multiplication gadgets) that might include non-linear randomness (e.g. by refreshing their inputs), while providing complete verification results for both types of gadgets. We achieve this complete verifiability by introducing a new algebraic characterization for such quadratic gadgets and exhibiting a complete method to determine the sets of input shares which are necessary and sufficient to perform a perfect simulation of any set of probes. We report various benchmarks which show that lronMask is competitive with state-of-the-art verification tools in the probing model (maskVerif, scVerif, SILVEH, matverif). lronMask is also several orders of magnitude faster than VHAPS -the only previous tool verifying random probing composability and expandability- as well as SILVEH -the only previous tool providing complete verification for quadratic gadgets with nonlinear randomness. Thanks to this completeness and increased performance, we obtain better bounds for the tolerated leakage probability of state-of-the-art random probing secure compilers.
Unmanned Aerial Vehicles (UAVs) are drawing enormous attention in both commercial and military applications to facilitate dynamic wireless communications and deliver seamless connectivity due to their flexible deployment, inherent line-of-sight (LOS) air-to-ground (A2G) channels, and high mobility. These advantages, however, render UAV-enabled wireless communication systems susceptible to eavesdropping attempts. Hence, there is a strong need to protect the wireless channel through which most of the UAV-enabled applications share data with each other. There exist various error correction techniques such as Low Density Parity Check (LDPC), polar codes that provide safe and reliable data transmission by exploiting the physical layer but require high transmission power. Also, the security gap achieved by these error-correction techniques must be reduced to improve the security level. In this paper, we present deep learning (DL) enabled punctured LDPC codes to provide secure and reliable transmission of data for UAVs through the Additive White Gaussian Noise (AWGN) channel irrespective of the computational power and channel state information (CSI) of the Eavesdropper. Numerical result analysis shows that the proposed scheme reduces the Bit Error Rate (BER) at Bob effectively as compared to Eve and the Signal to Noise Ratio (SNR) per bit value of 3.5 dB is achieved at the maximum threshold value of BER. Also, the security gap is reduced by 47.22 % as compared to conventional LDPC codes.
Many organizations process and store classified data within their computer networks. Owing to the value of data that they hold; such organizations are more vulnerable to targets from adversaries. Accordingly, the sensitive organizations resort to an ‘air-gap’ approach on their networks, to ensure better protection. However, despite the physical and logical isolation, the attackers have successfully manifested their capabilities by compromising such networks; examples of Stuxnet and Agent.btz in view. Such attacks were possible due to the successful manipulation of human beings. It has been observed that to build up such attacks, persistent reconnaissance of the employees, and their data collection often forms the first step. With the rapid integration of social media into our daily lives, the prospects for data-seekers through that platform are higher. The inherent risks and vulnerabilities of social networking sites/apps have cultivated a rich environment for foreign adversaries to cherry-pick personal information and carry out successful profiling of employees assigned with sensitive appointments. With further targeted social engineering techniques against the identified employees and their families, attackers extract more and more relevant data to make an intelligent picture. Finally, all the information is fused to design their further sophisticated attacks against the air-gapped facility for data pilferage. In this regard, the success of the adversaries in harvesting the personal information of the victims largely depends upon the common errors committed by legitimate users while on duty, in transit, and after their retreat. Such errors would keep on repeating unless these are aligned with their underlying human behaviors and weaknesses, and the requisite mitigation framework is worked out.