Fu, Shichong, Li, Xiaoling, Zhao, Yao.
2022.
Improved Steganography Based on Referential Cover and Non-symmetric Embedding. 2022 IEEE 5th International Conference on Electronics Technology (ICET). :1202–1206.
Minimizing embedding impact model of steganography has good performance for steganalysis detection. By using effective distortion cost function and coding method, steganography under this model becomes the mainstream embedding framework recently. In this paper, to improve the anti-detection performance, a new steganography optimization model by constructing a reference cover is proposed. First, a reference cover is construed by performing a filtering operation on the cover image. Then, by minimizing the residual between the reference cover and the original cover, the optimization function is formulated considering the effect of different modification directions. With correcting the distortion cost of +1 and \_1 modification operations, the stego image obtained by the proposed method is more consistent with the natural image. Finally, by applying the proposed framework to the cost function of the well-known HILL embedding, experimental results show that the anti-detection performance of the proposed method is better than the traditional method.
ISSN: 2768-6515
Liu, Qin, Yang, Jiamin, Jiang, Hongbo, Wu, Jie, Peng, Tao, Wang, Tian, Wang, Guojun.
2022.
When Deep Learning Meets Steganography: Protecting Inference Privacy in the Dark. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications. :590–599.
While cloud-based deep learning benefits for high-accuracy inference, it leads to potential privacy risks when exposing sensitive data to untrusted servers. In this paper, we work on exploring the feasibility of steganography in preserving inference privacy. Specifically, we devise GHOST and GHOST+, two private inference solutions employing steganography to make sensitive images invisible in the inference phase. Motivated by the fact that deep neural networks (DNNs) are inherently vulnerable to adversarial attacks, our main idea is turning this vulnerability into the weapon for data privacy, enabling the DNN to misclassify a stego image into the class of the sensitive image hidden in it. The main difference is that GHOST retrains the DNN into a poisoned network to learn the hidden features of sensitive images, but GHOST+ leverages a generative adversarial network (GAN) to produce adversarial perturbations without altering the DNN. For enhanced privacy and a better computation-communication trade-off, both solutions adopt the edge-cloud collaborative framework. Compared with the previous solutions, this is the first work that successfully integrates steganography and the nature of DNNs to achieve private inference while ensuring high accuracy. Extensive experiments validate that steganography has excellent ability in accuracy-aware privacy protection of deep learning.
ISSN: 2641-9874
Yahia, Fatima F. M., Abushaala, Ahmed M..
2022.
Cryptography using Affine Hill Cipher Combining with Hybrid Edge Detection (Canny-LoG) and LSB for Data Hiding. 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA). :379–384.
In our time the rapid growth of internet and digital communications has been required to be protected from illegal users. It is important to secure the information transmitted between the sender and receiver over the communication channels such as the internet, since it is a public environment. Cryptography and Steganography are the most popular techniques used for sending data in secrete way. In this paper, we are proposing a new algorithm that combines both cryptography and steganography in order to increase the level of data security against attackers. In cryptography, we are using affine hill cipher method; while in steganography we are using Hybrid edge detection with LSB to hide the message. Our paper shows how we can use image edges to hide text message. Grayscale images are used for our experiments and a comparison is developed based on using different edge detection operators such as (canny-LoG ) and (Canny-Sobel). Their performance is measured using PSNR (Peak Signal to Noise ratio), MSE (Mean Squared Error) and EC (Embedding Capacity). The results indicate that, using hybrid edge detection (canny- LoG) with LSB for hiding data could provide high embedding capacity than using hybrid edge detection (canny- Sobel) with LSB. We could prove that hiding in the image edge area could preserve the imperceptibility of the Stego-image. This paper has also proved that the secrete message was extracted successfully without any distortion.
Kumar, Manish, Soni, Aman, Shekhawat, Ajay Raj Singh, Rawat, Akash.
2022.
Enhanced Digital Image and Text Data Security Using Hybrid Model of LSB Steganography and AES Cryptography Technique. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :1453–1457.
In the present innovation, for the trading of information, the internet is the most well-known and significant medium. With the progression of the web and data innovation, computerized media has become perhaps the most famous and notable data transfer tools. This advanced information incorporates text, pictures, sound, video etc moved over the public organization. The majority of these advanced media appear as pictures and are a significant part in different applications, for example, chat, talk, news, website, web-based business, email, and digital books. The content is still facing various challenges in which including the issues of protection of copyright, modification, authentication. Cryptography, steganography, embedding techniques is widely used to secure the digital data. In this present the hybrid model of LSB steganography and Advanced Encryption Standard (AES) cryptography techniques to enhanced the security of the digital image and text that is undeniably challenging to break by the unapproved person. The security level of the secret information is estimated in the term of MSE and PSNR for better hiding required the low MSE and high PSNR values.
Kotkar, Aditya, Khadapkar, Shreyas, Gupta, Aniket, Jangale, Smita.
2022.
Multiple layered Security using combination of Cryptography with Rotational, Flipping Steganography and Message Authentication. 2022 IEEE International Conference on Data Science and Information System (ICDSIS). :1–5.
Data or information are being transferred at an enormous pace and hence protecting and securing this transmission of data are very important and have been very challenging. Cryptography and Steganography are the most broadly used techniques for safeguarding data by encryption of data and hiding the existence of data. A multi-layered secure transmission can be achieved by combining Cryptography with Steganography and by adding message authentication ensuring the confidentiality of the message. Different approach towards Steganography implementation is proposed using rotations and flips to prevent detection of encoded messages. Compression of multimedia files is set up for increasing the speed of encoding and consuming less storage space. The HMAC (Hash-based Authentication Code) algorithm is chosen for message authentication and integrity. The performance of the proposed Steganography methods is concluded using Histogram comparative analysis. Simulations have been performed to back the reliability of the proposed method.
Ni, Xuming, Zheng, Jianxin, Guo, Yu, Jin, Xu, Li, Ling.
2022.
Predicting severity of software vulnerability based on BERT-CNN. 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI). :711–715.
Software vulnerabilities threaten the security of computer system, and recently more and more loopholes have been discovered and disclosed. For the detected vulnerabilities, the relevant personnel will analyze the vulnerability characteristics, and combine the vulnerability scoring system to determine their severity level, so as to determine which vulnerabilities need to be dealt with first. In recent years, some characteristic description-based methods have been used to predict the severity level of vulnerability. However, the traditional text processing methods only grasp the superficial meaning of the text and ignore the important contextual information in the text. Therefore, this paper proposes an innovative method, called BERT-CNN, which combines the specific task layer of Bert with CNN to capture important contextual information in the text. First, we use Bert to process the vulnerability description and other information, including Access Gained, Attack Origin and Authentication Required, to generate the feature vectors. Then these feature vectors of vulnerabilities and their severity levels are input into a CNN network, and the parameters of the CNN are gotten. Next, the fine-tuned Bert and the trained CNN are used to predict the severity level of a vulnerability. The results show that our method outperforms the state-of-the-art method with 91.31% on F1-score.
Pani, Samita Rani, Samal, Rajat Kanti, Bera, Pallav Kumar.
2022.
A Graph-Theoretic Approach to Assess the Power Grid Vulnerabilities to Transmission Line Outages. 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP). :1–6.
The outages and power shortages are common occurrences in today's world and they have a significant economic impact. These failures can be minimized by making the power grid topologically robust. Therefore, the vulnerability assessment in power systems has become a major concern. This paper considers both pure and extended topological method to analyse the vulnerability of the power system to single line failures. The lines are ranked based on four spectral graph metrics: spectral radius, algebraic connectivity, natural connectivity, and effective graph resistance. A correlation is established between all the four metrics. The impact of load uncertainty on the component ranking has been investigated. The vulnerability assessment has been done on IEEE 9-bus system. It is observed that load variation has minor impact on the ranking.
Zhang, Hua, Su, Xueneng.
2022.
Method for Vulnerability Analysis of Communication Link in Electric Cyber Physical System. 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES). :41–46.
This paper conducts simulation analysis on power transmission lines and availability of power communication link based on Latin hypercube sampling. It proposes a new method of vulnerability communication link assessment for electric cyber physical system. Wind power output, transmission line failure and communication link failure of electric cyber physical system are sampled to obtain different operating states of electric cyber physical system. The connectivity of communication links under different operating states of electric cyber physical system is calculated to judge whether the communication nodes of the links are connected with the control master station. According to the connection between the link communication node and the control master station, the switching load and switching load of the electric cyber physical system in different operating states are calculated, and the optimal switching load of the electric cyber physical system in different operating states is obtained. This method can clearly identify the vulnerable link in the electric cyber physical system, so as to monitor the vulnerable link and strengthen the link strength.
Liu, Weidong, Li, Lei, Li, Xiaohui.
2022.
Power System Forced Oscillation Caused by Malicious Mode Attack via Coordinated Charging. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :1838–1844.
For the huge charging demands of numerous electric vehicles (EVs), coordinated charging is increasing in power grid. However, since connected with public networks, the coordinated charging control system is in a low-level cyber security and greatly vulnerable to malicious attacks. This paper investigates the malicious mode attack (MMA), which is a new cyber-attack pattern that simultaneously attacks massive EV charging piles to generate continuous sinusoidal power disturbance with the same frequency as the poorly-damped wide-area electromechanical mode. Thereby, high amplitude forced oscillations are stimulated by MMA, which seriously threats the stability of power systems and the power supply of charging stations. The potential threat of MMA is clarified by investigating the vulnerability of the IoT-based coordinated charging load control system, and an MMA process like Mirai is pointed out as an example. An MMA model is established for impact analysis. A hardware test platform is built for the verification of the MMA model. Test result verified the existence of MMA and the accuracy of the MMA model.
Li, Mingxuan, Li, Feng, Yin, Jun, Fei, Jiaxuan, Chen, Jia.
2022.
Research on Security Vulnerability Mining Technology for Terminals of Electric Power Internet of Things. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1638–1642.
Aiming at the specificity and complexity of the power IoT terminal, a method of power IoT terminal firmware vulnerability detection based on memory fuzzing is proposed. Use the method of bypassing the execution to simulate and run the firmware program, dynamically monitor and control the execution of the firmware program, realize the memory fuzzing test of the firmware program, design an automatic vulnerability exploitability judgment plug-in for rules and procedures, and provide power on this basis The method and specific process of the firmware vulnerability detection of the IoT terminal. The effectiveness of the method is verified by an example.
ISSN: 2693-289X
Pani, Samita Rani, Samal, Rajat Kanti.
2022.
Vulnerability Assessment of Power System Under N-1 Contingency Conditions. 2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T). :1–4.
Despite the fact that the power grid is typically regarded as a relatively stable system, outages and electricity shortages are common occurrences. Grid security is mainly dependent on accurate vulnerability assessment. The vulnerability can be assessed in terms of topology-based metrics and flow-based metrics. In this work, power flow analysis is used to calculate the metrics under single line contingency (N-1) conditions. The effect of load uncertainty on system vulnerability is checked. The IEEE 30 bus power network has been used for the case study. It has been found that the variation in load demand affects the system vulnerability.
Peng, Jiang, Jiang, Wendong, Jiang, Hong, Ge, Huangxu, Gong, Peilin, Luo, Lingen.
2022.
Stochastic Vulnerability Analysis methodology for Power Transmission Network Considering Wind Generation. 2022 Power System and Green Energy Conference (PSGEC). :85–90.
This paper proposes a power network vulnerability analysis method based on topological approach considering of uncertainties from high-penetrated wind generations. In order to assess the influence of the impact of wind generation owing to its variable wind speed etc., the Quasi Monte Carlo based probabilistic load flow is adopted and performed. On the other hand, an extended stochastic topological vulnerability method involving Complex Network theory with probabilistic load flow is proposed. Corresponding metrics, namely stochastic electrical betweenness and stochastic net-ability are proposed respectively and applied to analyze the vulnerability of power network with wind generations. The case study of CIGRE medium voltage benchmark network is performed for illustration and evaluation. Furthermore, a cascading failures model considering the stochastic metrics is also developed to verify the effectiveness of proposed methodology.
Chen, Duanyun, Chen, Zewen, Li, Jie, Liu, Jidong.
2022.
Vulnerability analysis of Cyber-physical power system based on Analytic Hierarchy Process. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:2024–2028.
In recent years, the blackout accident shows that the cause of power failure is not only in the power network, but also in the cyber network. Aiming at the problem of cyber network fault Cyber-physical power systems, combined with the structure and functional attributes of cyber network, the comprehensive criticality of information node is defined. By evaluating the vulnerability of ieee39 node system, it is found that the fault of high comprehensive criticality information node will cause greater load loss to the system. The simulation results show that the comprehensive criticality index can effectively identify the key nodes of the cyber network.
ISSN: 2693-2865
Zou, Zhenwan, Yin, Jun, Yang, Ling, Luo, Cheng, Fei, Jiaxuan.
2022.
Research on Nondestructive Vulnerability Detection Technology of Power Industrial Control System. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1591–1594.
The power industrial control system is an important part of the national critical Information infrastructure. Its security is related to the national strategic security and has become an important target of cyber attacks. In order to solve the problem that the vulnerability detection technology of power industrial control system cannot meet the requirement of non-destructive, this paper proposes an industrial control vulnerability analysis technology combined with dynamic and static analysis technology. On this basis, an industrial control non-destructive vulnerability detection system is designed, and a simulation verification platform is built to verify the effectiveness of the industrial control non-destructive vulnerability detection system. These provide technical support for the safety protection research of the power industrial control system.
Li, Zhiqiang, Han, Shuai.
2022.
Research on Physical Layer Security of MIMO Two-way Relay System. ICC 2022 - IEEE International Conference on Communications. :3311–3316.
MIMO system makes full use of the space dimension, in the era of increasingly tense spectrum resources, which greatly improves the spectrum efficiency and is one of the future communication support technologies. At the same time, considering the high cost of direct communication between the two parties in a long distance, the relay communication mode has been paid more and more attention. In relay communication network, each node connected by relay has different security levels. In order to forward the information of all nodes, the relay node has the lowest security permission level. Therefore, it is meaningful to study the physical layer security problem in MIMO two-way relay system with relay as the eavesdropper. In view of the above situation, this paper proposes the physical layer security model of MIMO two-way relay cooperative communication network, designs a communication matching grouping algorithm with low complexity and a two-step carrier allocation optimization algorithm, which improves the total security capacity of the system. At the same time, theoretical analysis and simulation verify the effectiveness of the proposed algorithm.
ISSN: 1938-1883
Ayaz, Ferheen, Sheng, Zhengguo, Ho, Ivan Weng-Hei, Tiany, Daxin, Ding, Zhiguo.
2022.
Blockchain-enabled FD-NOMA based Vehicular Network with Physical Layer Security. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–6.
Vehicular networks are vulnerable to large scale attacks. Blockchain, implemented upon application layer, is recommended as one of the effective security and privacy solutions for vehicular networks. However, due to an increasing complexity of connected nodes, heterogeneous environment and rising threats, a robust security solution across multiple layers is required. Motivated by the Physical Layer Security (PLS) which utilizes physical layer characteristics such as channel fading to ensure reliable and confidential transmission, in this paper we analyze the impact of PLS on a blockchain-enabled vehicular network with two types of physical layer attacks, i.e., jamming and eavesdropping. Throughout the analysis, a Full Duplex Non-Orthogonal Multiple Access (FD-NOMA) based vehicle-to-everything (V2X) is considered to reduce interference caused by jamming and meet 5G communication requirements. Simulation results show enhanced goodput of a blockckchain enabled vehicular network integrated with PLS as compared to the same solution without PLS.
ISSN: 2577-2465
Kang, Min Suk.
2022.
Potential Security Concerns at the Physical Layer of 6G Cellular Systems. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :981–984.
In this short position paper, we discuss several potential security concerns that can be found at the physical layer of 6th-generation (6G) cellular networks. Discussion on 6G cellular networks is still at its early stage and thus several candidate radio technologies have been proposed but no single technology has yet been finally selected for 6G systems. Among several radio technologies, we focus on three promising ones for 6G physical-layer technologies: reconfigurable intelligent surface (RIS), Open-RAN (O-RAN), and full-duplex radios. We hope this position paper will spark more active discussion on the security concerns in these new radio technologies.
ISSN: 2162-1241
Vosoughitabar, Shaghayegh, Nooraiepour, Alireza, Bajwa, Waheed U., Mandayam, Narayan, Wu, Chung- Tse Michael.
2022.
Metamaterial-Enabled 2D Directional Modulation Array Transmitter for Physical Layer Security in Wireless Communication Links. 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022. :595–598.
A new type of time modulated metamaterial (MTM) antenna array transmitter capable of realizing 2D directional modulation (DM) for physical layer (PHY) security is presented in this work. The proposed 2D DM MTM antenna array is formed by a time modulated corporate feed network loaded with composite right/left-handed (CRLH) leaky wave antennas (LWAs). By properly designing the on-off states of the switch for each antenna feeding branch as well as harnessing the frequency scanning characteristics of CRLH L WAs, 2D DM can be realized to form a PHY secured transmission link in the 2D space. Experimental results demonstrate the bit-error-rate (BER) is low only at a specific 2D angle for the orthogonal frequency-division multiplexing (OFDM) wireless data links.
ISSN: 2576-7216
Chen, Songlin, Wang, Sijing, Xu, Xingchen, Jiao, Long, Wen, Hong.
2022.
Physical Layer Security Authentication Based Wireless Industrial Communication System for Spoofing Detection. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Security is of vital importance in wireless industrial communication systems. When spoofing attacking has occurred, leading to economic losses or even safety accidents. So as to address the concern, existing approaches mainly rely on traditional cryptographic algorithms. However, these methods cannot meet the needs of short delay and lightweight. In this paper, we propose a CSI-based PHY-layer security authentication scheme to detect spoofing detection. The main idea takes advantage of the uncorrelated nature of wireless channels to the identification of spoofing nodes in the physical layer. We demonstrate a MIMO-OFDM based spoofing detection prototype in industrial environments. Firstly, utilizing Universal Software Radio Peripheral (USRPs) to establish MIMO-OFDM communication systems is presented. Secondly, our proposed security scheme of CSI-based PHY-layer authentication is demonstrated. Finally, the effectiveness of the proposed approach has been verified via attack experiments.
Sekhar, P. Chandra, Murthy, T. S. N..
2022.
Physical Layer Security using SMO. 2022 International Conference on Computing, Communication and Power Technology (IC3P). :98–102.
Physical Layer Security (PLS) is used to accomplish perfect secure communication between intended network nodes, while the eavesdropper gets zero information. In this paper, a smart antenna technology i.e., Massive multiple-input-multiple-output (mMIMO) and Non-Orthogonal Multiple Access (NOMA) technology is being used to enhance the secrecy performance of a 5G communication network. Small scale Rayleigh fading channels, as well as large scale pathway loss, have to be taken into consideration. An eavesdropper with multiple antennas, an amplify-and-forward (AF) relay with multi antenna has been proposed. Spider Monkey Algorithm (SMO) is used in adding Artificial Noise (AN) for refining secrecy rate. The findings revealed that the suggested technique improves the security and the quality of Wireless communication.
Venkatesh, Suresh, Saeidi, Hooman, Sengupta, Kaushik, Lu, Xuyang.
2022.
Millimeter-Wave Physical Layer Security through Space-Time Modulated Transmitter Arrays. 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON). :1–4.
Wireless security and privacy is gaining a significant interest due to the burgeoning growth of communication devices across the electromagnetic spectrum. In this article, we introduce the concept of the space-time modulated millimeter-wave wireless links enabling physical layer security in highspeed communication links. Such an approach does not require cryptographic key exchanges and enables security in a seamless fashion with no overhead on latency. We show both the design and implementation of such a secure system using custom integrated chips at 71-76 GHz with off-chip packaged antenna array. We also demonstrate the security metric of such a system and analyze the efficacy through distributed eavesdropper attack.
Huang, Yunge.
2022.
The Establishment of Internet-Based Network Physical Layer Security Identification System. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :190–193.
With the continuous development of the Internet, artificial intelligence, 5G and other technologies, various issues have started to receive attention, among which the network security issue is now one of the key research directions for relevant research scholars at home and abroad. This paper researches on the basis of traditional Internet technology to establish a security identification system on top of the network physical layer of the Internet, which can effectively identify some security problems on top of the network infrastructure equipment and solve the identified security problems on the physical layer. This experiment is to develop a security identification system, research and development in the network physical level of the Internet, compared with the traditional development of the relevant security identification system in the network layer, the development in the physical layer, can be based on the physical origin of the protection, from the root to solve part of the network security problems, can effectively carry out the identification and solution of network security problems. The experimental results show that the security identification system can identify some basic network security problems very effectively, and the system is developed based on the physical layer of the Internet network, and the protection is carried out from the physical device, and the retransmission symbol error rates of CQ-PNC algorithm and ML algorithm in the experiment are 110 and 102, respectively. The latter has a lower error rate and better protection.