Soosahabi, Reza, Bayoumi, Magdy.
2022.
On Securing MAC Layer Broadcast Signals Against Covert Channel Exploitation in 5G, 6G & Beyond. 2022 IEEE Future Networks World Forum (FNWF). :486—493.
In this work, we propose a novel framework to identify and mitigate a recently disclosed covert channel scheme exploiting unprotected broadcast messages in cellular MAC layer protocols. Examples of covert channel are used in data exfiltration, remote command-and-control (CnC) and espionage. Responsibly disclosed to GSMA (CVD-2021-0045), the SPAR-ROW covert channel scheme exploits the downlink power of LTE/5G base-stations that broadcast contention resolution identity (CRI) from any anonymous device according to the 3GPP standards. Thus, the SPARROW devices can covertly relay short messages across long-distance which can be potentially harmful to critical infrastructure. The SPARROW schemes can also complement the solutions for long-range M2M applications. This work investigates the security vs. performance trade-off in CRI-based contention resolution mechanisms. Then it offers a rig-orously designed method to randomly obfuscate CRI broadcast in future 5G/6G standards. Compared to CRI length reduction, the proposed method achieves considerable protection against SPARROW exploitation with less impact on the random-access performance as shown in the numerical results.
Severino, Ricardo, Rodrigues, João, Ferreira, Luis Lino.
2022.
Exploring Timing Covert Channel Performance over the IEEE 802.15.4. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—8.
As IoT technologies mature, they are increasingly finding their way into more sensitive domains, such as Medical and Industrial IoT, in which safety and cyber-security are paramount. While the number of deployed IoT devices continues to increase annually, they still present severe cyber-security vulnerabilities, turning them into potential targets and entry points to support further attacks. Naturally, as these nodes are compromised, attackers aim at setting up stealthy communication behaviours, to exfiltrate data or to orchestrate nodes of a botnet in a cloaked fashion. Network covert channels are increasingly being used with such malicious intents. The IEEE 802.15.4 is one of the most pervasive protocols in IoT, and a fundamental part of many communication infrastructures. Despite this fact, the possibility of setting up such covert communication techniques on this medium has received very little attention. We aim at analysing the performance and feasibility of such covert-channel implementations upon the IEEE 802.15.4 protocol. This will enable a better understanding of the involved risk and help supporting the development of further cyber-security mechanisms to mitigate this threat.
Wang, Qing, Zhang, Lizhe, Lu, Xin, Wang, Kenian.
2022.
A Multi-authority CP-ABE Scheme based on Cloud-Chain Fusion for SWIM. 2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). :213—219.
SWIM (System Wide Information Management) has become the development direction of A TM (Air Traffic Management) system by providing interoperable services to promote the exchange and sharing of data among various stakeholders. The premise of data sharing is security, and the access control has become the key guarantee for the secure sharing and exchange. The CP-ABE scheme (Ciphertext Policy Attribute-Based Encryption) can realize one-to-many access control, which is suitable for the characteristics of SWIM environment. However, the combination of the existing CP-ABE access control and SWIM has following constraints. 1. The traditional single authority CP-ABE scheme requires unconditional trust in the authority center. Once the authority center is corrupted, the excessive authority of the center may lead to the complete destruction of system security. So, SWIM with a large user group and data volume requires multiple authorities CP-ABE when performing access control. 2. There is no unified management of users' data access records. Lack of supervision on user behavior make it impossible to effectively deter malicious users. 3. There are a certain proportion of lightweight data users in SWIM, such as aircraft, users with handheld devices, etc. And their computing capacity becomes the bottleneck of data sharing. Aiming at these issues above, this paper based on cloud-chain fusion basically proposes a multi-authority CP-ABE scheme, called the MOV ATM scheme, which has three advantages. 1. Based on a multi-cloud and multi-authority CP-ABE, this solution conforms to the distributed nature of SWIM; 2. This scheme provides outsourced computing and verification functions for lightweight users; 3. Based on blockchain technology, a blockchain that is maintained by all stakeholders of SWIM is designed. It takes user's access records as transactions to ensure that access records are well documented and cannot be tampered with. Compared with other schemes, this scheme adds the functions of multi-authority, outsourcing, verifiability and auditability, but do not increase the decryption cost of users.